Performance-Driven Distillation and Confident Pseudo Labeling for Semi-Supervised Industrial Soft-Sensor Application

软传感器 蒸馏 工艺工程 计算机科学 人工智能 色谱法 化学 工程类 过程(计算) 操作系统
作者
B. B. Yue,Kai Wang,Hongqiu Zhu,Chunhua Yang,Weihua Gui
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tcyb.2025.3580633
摘要

In industrial soft-sensor applications, labeled samples are often scarce and unable to fully represent the dynamic changes in industrial processes. Although semi-supervised methods offer a potential solution to this issue, existing feature-construction-based methods cannot ensure the effectiveness of the feature, and pseudo-label-based methods lack an established confidence evaluation standard. To address these challenges, this article first proposes a novel performance-driven distillation strategy, which designs an innovative siameseLSTM structure for training multiple teacher models. By assigning higher weights to high-performance teacher models and simultaneously leveraging the guidance of the soft sensing task, the student model is guided to learn more effective feature representations. Additionally, a new pseudo label confidence evaluation strategy is introduced, which aims to enhance the generalization of the base soft-sensor model by selecting samples with high-confidence pseudo labels. Finally, By combining the above two strategies, a semi-supervised soft-sensor framework is proposed for the soft sensing of industrial quality variables. The effectiveness of the proposed framework is validated through two real-world datasets from different stages of the alumina production process. Compared with some existing advanced soft sensor frameworks, the prediction results on different datasets show that the root-mean-square error (RMSE) and mean absolute error (MAE) are reduced by an average of 10.76% and 11.18%, respectively, while the correlation coefficient (R2) is averagely increased by 0.1203.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呆萌幼晴完成签到,获得积分10
3秒前
闷闷完成签到,获得积分20
4秒前
超级玛丽完成签到 ,获得积分10
4秒前
5秒前
红岸完成签到,获得积分10
5秒前
小猪完成签到,获得积分10
5秒前
鬼见愁应助Hxj采纳,获得10
6秒前
小刘有个大梦想完成签到 ,获得积分10
6秒前
周小鱼完成签到,获得积分10
7秒前
派大星完成签到 ,获得积分10
7秒前
8秒前
9秒前
严zz完成签到,获得积分10
9秒前
阿Q完成签到,获得积分10
9秒前
10秒前
梧桐完成签到 ,获得积分10
10秒前
机智寻雪完成签到 ,获得积分10
10秒前
ymxlcfc完成签到 ,获得积分10
10秒前
11秒前
千寻完成签到,获得积分10
11秒前
亚婷儿完成签到,获得积分10
11秒前
西瓜刀发布了新的文献求助10
11秒前
lili完成签到 ,获得积分10
11秒前
11秒前
唠叨的白曼完成签到,获得积分10
13秒前
合适世平完成签到,获得积分20
13秒前
康康米其林完成签到,获得积分10
13秒前
Wang发布了新的文献求助10
14秒前
材料人完成签到,获得积分10
14秒前
gui发布了新的文献求助10
15秒前
正义的伙伴完成签到,获得积分10
15秒前
研友_nEWRJ8发布了新的文献求助10
16秒前
liu完成签到,获得积分10
17秒前
WU完成签到,获得积分10
17秒前
Ludi完成签到 ,获得积分10
18秒前
18秒前
18秒前
19秒前
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4081524
求助须知:如何正确求助?哪些是违规求助? 3620933
关于积分的说明 11487672
捐赠科研通 3336414
什么是DOI,文献DOI怎么找? 1834112
邀请新用户注册赠送积分活动 902897
科研通“疑难数据库(出版商)”最低求助积分说明 821351