Spectrum and epidemiology of rare diseases in a Chinese natural population of 14.31 million residents, 2012–2023

医学 流行病学 罕见病 入射(几何) 人口 疾病 儿科 内科学 环境卫生 物理 光学
作者
Mingjia Li,Qi Li,Miaomiao Zhao,Hanna Kim,Ruijia Feng,Moning Guo,Jeremy Heng,Jin‐Kui Yang,Chang Liu
出处
期刊:Orphanet Journal of Rare Diseases [BioMed Central]
卷期号:20 (1)
标识
DOI:10.1186/s13023-025-03933-8
摘要

Abstract Background Rare diseases, though individually uncommon, collectively affect a significant portion of the population. However, their epidemiology in China remains underexplored. A population-based rare disease registry comprising 14.31 million individuals was conducted between 2012 and 2023 by the Beijing Municipal Health Big Data and Policy Research Center. Rare disease cases were identified via ICD-10 codes mapped to China’s national rare disease lists (2018 and 2023) and international databases. Age-standardized incidence rates (ASIR) were calculated per 100,000 person-years with 95% confidence intervals. Results Our analysis identified 12,371 rare disease cases, with the overall ASIR increasing from 6.109 in 2012 to 7.394 in 2023. Rare neurologic diseases accounted for 52.12% of cases, followed by systemic and rheumatologic diseases (16.89%) and rare neoplastic diseases (9.99%). The most frequently diagnosed rare diseases included generalized myasthenia gravis, ANCA-associated vasculitis, and malignant melanoma. Significant sex-based differences were observed, with female patients more affected by systemic and rheumatologic conditions, while male patients showed a higher incidence of respiratory disorders. Pediatric patients predominantly presented with inborn errors of metabolism and rare immune diseases. Comparisons with global data revealed notable disparities, such as a higher prevalence of Wilson’s disease and a lower incidence of amyotrophic lateral sclerosis (ALS) in China. Conclusions This study represents the first large-scale, population-based analysis of rare diseases in China, revealing distinct epidemiological patterns. These findings underscore the critical need for healthcare policies that address the unique challenges posed by rare diseases in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃博完成签到,获得积分10
2秒前
在水一方应助虚心的灵波采纳,获得10
3秒前
try一try发布了新的文献求助10
5秒前
wangyuxin完成签到,获得积分10
5秒前
科研通AI5应助小丸子采纳,获得10
6秒前
6秒前
科研通AI2S应助blue2021采纳,获得10
7秒前
张道恒完成签到,获得积分10
7秒前
骆闻完成签到 ,获得积分10
8秒前
科研通AI5应助123456采纳,获得10
8秒前
9秒前
已秃发布了新的文献求助10
9秒前
勤耕苦读完成签到,获得积分10
9秒前
9秒前
斯文败类应助吴小胖采纳,获得10
10秒前
10秒前
10秒前
李健应助善良的剑通采纳,获得30
11秒前
酷波er应助舒服的忆南采纳,获得10
12秒前
12秒前
12秒前
13秒前
liran完成签到,获得积分10
14秒前
科研通AI2S应助KKKKKKEY采纳,获得10
14秒前
友好的蝉发布了新的文献求助10
15秒前
15秒前
15秒前
WFLLL发布了新的文献求助10
15秒前
16秒前
try一try完成签到,获得积分20
17秒前
liran发布了新的文献求助10
17秒前
丘比特应助火苗采纳,获得10
18秒前
18秒前
18秒前
HOLLYWOO发布了新的文献求助10
18秒前
jie发布了新的文献求助10
19秒前
小丸子发布了新的文献求助10
19秒前
composite66完成签到,获得积分10
20秒前
20秒前
所所应助来来回回采纳,获得10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4181661
求助须知:如何正确求助?哪些是违规求助? 3717754
关于积分的说明 11719321
捐赠科研通 3397646
什么是DOI,文献DOI怎么找? 1864210
邀请新用户注册赠送积分活动 922140
科研通“疑难数据库(出版商)”最低求助积分说明 833831