亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remote Sensing Image Generation via Object Text Decoupling.

计算机科学 解耦(概率) 计算机视觉 图像(数学) 对象(语法) 人工智能 情报检索 工程类 控制工程
作者
Wenda Zhao,Zhepu Zhang,Fan Zhao,Haipeng Wang,You He,Huchuan Lu
出处
期刊:PubMed 卷期号:PP
标识
DOI:10.1109/tpami.2025.3599520
摘要

Remote sensing images usually reveal various objects with complex structures and different locations within vast ground area backgrounds. That leads to a major challenge for conventional generative models in handling remote sensing objects with correct shapes and clear textures. Integrating additional object-level controls can be a potential solution to improve generation quality, yet previous approaches inject the object-related conditions by specifying their locations, causing a limitation in object layout in generated results. To enable high object fidelity, high layout diversity and object customizable generation for remote sensing images, we propose a remote sensing image generation via object text decoupling, namely OTD-GAN. OTD-GAN takes advantage of the inherent text-toimage generation procedure and adaptively integrates the decoupled textual representations of visual objects into the global captions, thus achieving object-level controls without layout restrictions. Specifically, we design an object text decoupling module to predict a semantically consistent textual representation for each object. By decoupling the textual representation into a class invariant part and an object specific part, the converted representation is able to catch general semantics for similar objects as well as differentiated details for individual objects. After that, we use an object text semantic enhancement module to fuse the obtained object text representations with the global captions to enrich the object-related semantics within the textual modality. As a result, the generator will benefit from the object conditions and reinforce the generation quality while remaining flexible to create diverse layouts. Extensive experiments on remote sensing image-caption datasets including NWPU-Captions and RSICD demonstrate that our method achieves leading performance compared to existing state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的冷风完成签到 ,获得积分10
8秒前
顺利若山完成签到,获得积分10
12秒前
zxd关注了科研通微信公众号
12秒前
18秒前
19秒前
zxd发布了新的文献求助10
27秒前
Criminology34发布了新的文献求助10
27秒前
生姜批发刘哥完成签到 ,获得积分10
32秒前
42秒前
淑儿哥哥发布了新的文献求助10
48秒前
50秒前
1分钟前
1分钟前
葵花籽发布了新的文献求助10
1分钟前
2分钟前
2分钟前
姚期历发布了新的文献求助30
2分钟前
2分钟前
浮游应助少侠饶命采纳,获得10
2分钟前
Jack发布了新的文献求助10
2分钟前
JoeyJin完成签到,获得积分10
2分钟前
153发布了新的文献求助10
2分钟前
俏皮元珊完成签到 ,获得积分10
2分钟前
少侠饶命完成签到,获得积分10
2分钟前
3分钟前
可爱的函函应助陶醉山灵采纳,获得10
3分钟前
Aurora发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
HS完成签到,获得积分10
3分钟前
3分钟前
英姑应助153采纳,获得20
4分钟前
姚期历完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
xiaoyuzi发布了新的文献求助10
5分钟前
顾矜应助ceeray23采纳,获得20
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4858303
求助须知:如何正确求助?哪些是违规求助? 4154117
关于积分的说明 12874249
捐赠科研通 3904425
什么是DOI,文献DOI怎么找? 2145292
邀请新用户注册赠送积分活动 1164474
关于科研通互助平台的介绍 1065673