分块矩阵
还原(数学)
对角线的
块(置换群论)
可积系统
群(周期表)
基质(化学分析)
纯数学
数学
对角矩阵
域代数上的
组合数学
物理
材料科学
几何学
特征向量
量子力学
复合材料
标识
DOI:10.1088/1572-9494/adf42a
摘要
Abstract This paper proposes an innovative form of group reduction or similarity transformation involving off-diagonal block matrices. The proposed method is applied to the Ablowitz–Kaup–Newell–Segur (AKNS) matrix spectral problem, leading to the generation of reduced matrix AKNS integrable hierarchies. As a result, a variety of reduced multiple-component integrable nonlinear Schrödinger and modified Korteweg–de Vries models are derived from the analysis of the reduced AKNS matrix spectral problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI