A Physics-informed Machine Learning Framework Combined with a Reduced Order Model for Efficient Prediction of Unsteady Vortex Shedding

旋涡脱落 涡流 订单(交换) 物理 计算机科学 统计物理学 机械 经济 财务 雷诺数 湍流
作者
Guang Yin,Muk Chen Ong
出处
期刊:Journal of offshore mechanics and Arctic engineering [ASM International]
卷期号:: 1-25
标识
DOI:10.1115/1.4069239
摘要

Abstract This study introduces a novel physics-informed machine learning framework combined with a reduced order model (ROM) for efficiently modeling unsteady vortex shedding phenomena. The framework consists of offline and online stages. During the offline stage, numerical simulation data for flow past a cylinder is processed using the Proper Orthogonal Decomposition (POD) method to achieve a low-dimensional representation of the flow fields. Instead of directly solving the POD-Galerkin reduced-order dynamic system, a physics-informed neural network (PINN) is employed to map time to the temporal coefficients of the dominant POD modes. The PINN is trained by minimizing a weighted loss function that combines the error of the labeled temporal coefficients and the residual loss of the POD-Galerkin dynamic system. During the online stage, the performance of the trained PINN is evaluated for two cases of a laminar flow at a low Reynolds number and a turbulent flow at a high Reynolds number, which is solved based on Reynolds-Averaged Navier-Stokes (RANS) equations. Predictive results from the PINN based on the reduced-order dynamic system are compared to those from a PINN trained on labeled numerical simulation data, which shows the accuracy of the proposed method for unsteady flow problems. In addition, the effects of various PINN parameters on model performance are thoroughly analyzed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小陈发布了新的文献求助10
刚刚
周路飞发布了新的文献求助10
刚刚
小马甲应助二三采纳,获得10
1秒前
敏感凡双应助科研通管家采纳,获得10
2秒前
敏感凡双应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得30
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
coolkid应助科研通管家采纳,获得10
2秒前
kingwill应助科研通管家采纳,获得20
3秒前
3秒前
敏感凡双应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
3秒前
思源应助yym采纳,获得10
4秒前
ysk完成签到,获得积分10
4秒前
5秒前
束滟泽完成签到,获得积分10
5秒前
QSJ完成签到,获得积分10
6秒前
7秒前
111发布了新的文献求助10
7秒前
科研通AI6应助滚筒洗衣机采纳,获得10
8秒前
wanci应助张志迪采纳,获得10
8秒前
贪玩水瑶发布了新的文献求助10
8秒前
无花果应助小陈采纳,获得10
8秒前
小黑猴ps完成签到,获得积分10
9秒前
冷冷发布了新的文献求助10
10秒前
wooyh完成签到,获得积分10
11秒前
12秒前
一期一会完成签到,获得积分10
12秒前
zimo应助ysk采纳,获得20
13秒前
111完成签到,获得积分10
14秒前
科研通AI6应助少年采纳,获得10
14秒前
Sonder发布了新的文献求助10
15秒前
小蘑菇应助顺心的筮采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4481460
求助须知:如何正确求助?哪些是违规求助? 3937988
关于积分的说明 12216380
捐赠科研通 3592977
什么是DOI,文献DOI怎么找? 1975956
邀请新用户注册赠送积分活动 1013123
科研通“疑难数据库(出版商)”最低求助积分说明 906310