Internet Addiction and Depressive Symptoms in University Students: Latent Profiles, Network Structure, and Symptomatic Pathways to Suicide Risk

上瘾 心理学 抑郁症状 自杀风险 互联网 精神科 临床心理学 自杀预防 毒物控制 医学 医疗急救 万维网 焦虑 计算机科学
作者
Yuan Li,Jing Shi,Biru Luo,Anqi Xiong,Siqi Xiong,Jing Wang,Shujuan Liao
出处
期刊:Depression and Anxiety [Wiley]
卷期号:2025 (1): 4591408-4591408 被引量:1
标识
DOI:10.1155/da/4591408
摘要

Background: Internet addiction and depression frequently co‐occur among university students, resulting in amplified functional deterioration and treatment resistance. Despite established bidirectional relationships, existing research has predominantly examined linear associations and treated these conditions as single global constructs. This study integrated person‐centered and network‐based approaches to identify distinct symptom profiles of Internet addiction and depressive symptoms, examine sociodemographic predictors of profile membership, and uncover interconnected symptom networks within high‐risk populations among Chinese university students. Methods: A multicenter cross‐sectional study was conducted from April to July 2024. Data were collected through a web‐based survey incorporating validated instruments for Internet addiction, depression, and suicide risk assessment. Latent profile analysis was employed to identify distinct symptom profiles, followed by multivariate logistic regression to examine sociodemographic predictors. Network analysis was performed within the high‐risk profile to unveil symptom interactions, central symptoms, bridge symptoms, and symptomatic pathways to suicide risk. Results: Among 30,992 participants, latent profile analysis identified three distinct groups: Healthy profile (59.31%), at‐risk profile (35.06%), and comorbidity profile (5.63%). Students who were female, ethnic minorities, in higher grade levels, and had prolonged Internet use showed increased risks of problematic profiles. Conversely, enrollment in bachelor’s programs, science and medical majors, higher household income, and regular physical activity demonstrated protective effects. Network analysis revealed Internet preoccupation and fatigue as central symptoms, identified key bridge symptoms (e.g., offline negative affect, difficulty concentrating) linking the symptom clusters, and highlighted Internet withdrawal symptoms and depressed mood as critical pathways to suicide risk within the comorbidity profile. Conclusion: This study identified distinct profiles of Internet addiction and depression comorbidity, with specific sociodemographic and lifestyle predictors informing targeted screening strategies. Network analysis revealed central symptoms and specific bridge symptoms connecting the conditions, while also identifying critical pathways to suicide risk in the Comorbidity profile, providing empirical evidence for developing precise and effective interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助标致小珍采纳,获得10
刚刚
哭泣青烟完成签到 ,获得积分10
刚刚
李健的小迷弟应助不知道采纳,获得30
刚刚
酷波er应助Lojong采纳,获得10
刚刚
一只小羊发布了新的文献求助30
1秒前
Atari完成签到,获得积分10
2秒前
Ava应助查查采纳,获得10
3秒前
4秒前
赘婿应助饱满的凌文采纳,获得10
4秒前
丘比特别肝完成签到,获得积分20
4秒前
哦哦完成签到,获得积分10
4秒前
aass发布了新的文献求助30
4秒前
5秒前
5秒前
7秒前
7秒前
7秒前
1033sry完成签到,获得积分10
7秒前
科目三应助xuyw采纳,获得10
7秒前
rudjs发布了新的文献求助10
8秒前
一次发布了新的文献求助10
9秒前
zzzp发布了新的文献求助30
9秒前
hui发布了新的文献求助10
10秒前
蛋花肉圆汤完成签到,获得积分10
10秒前
10秒前
Chara_kara完成签到,获得积分10
10秒前
Chara_kara发布了新的文献求助30
12秒前
chan完成签到,获得积分10
12秒前
12秒前
标致小珍发布了新的文献求助10
13秒前
zjy发布了新的文献求助10
13秒前
玄xuan完成签到 ,获得积分10
13秒前
a_xiuxiu完成签到,获得积分10
15秒前
科研通AI6应助Samlion采纳,获得10
15秒前
aimorui发布了新的文献求助10
17秒前
幽默的太阳完成签到 ,获得积分10
17秒前
17秒前
17秒前
17秒前
不知道发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566369
求助须知:如何正确求助?哪些是违规求助? 4651162
关于积分的说明 14695146
捐赠科研通 4593161
什么是DOI,文献DOI怎么找? 2519992
邀请新用户注册赠送积分活动 1492348
关于科研通互助平台的介绍 1463472