生物
泛素连接酶
癌症研究
结直肠癌
表观遗传学
泛素
细胞生物学
癌变
下调和上调
癌症
生物化学
遗传学
基因
作者
Xiong Li,Huashan Liu,Chi Zhou,Xin Yang,Liang Huang,Haiqing Jie,Ziwei Zeng,Xiaobin Zheng,Wenxin Li,Zhanzhen Liu,Liang Kang,Zhenxing Liang
标识
DOI:10.1186/s12943-023-01773-3
摘要
Abstract Background Hypoxia is a hallmark of solid tumors and leads to the metabolic reprogramming of cancer cells. The role of epigenetic regulation between hypoxia and aberrant cholesterol metabolism in colorectal cancer (CRC) remains elusive. Methods Hypoxia-responsive circular RNAs (circRNAs) were identified by high throughput RNA sequencing between CRC cells cultured under normoxia or hypoxia. The protein-coding potential of circINSIG1 was identified by polysome profiling and LC–MS. The function of circINSIG1 was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by immunoprecipitation analyses. Results A novel hypoxia-responsive circRNA named circINSIG1 was identified, which was upregulated in CRC tissues and correlated with advanced clinical stages and poor survival. Mechanistically, circINSIG1 encoded a 121 amino acid protein circINSIG1-121 to promote K48-linked ubiquitination of the critical cholesterol metabolism regulator INSIG1 at lysine 156 and 158 by recruiting CUL5-ASB6 complex, a ubiquitin E3 ligase complex, thereby inducing cholesterol biosynthesis to promote CRC proliferation and metastasis. The orthotopic xenograft tumor models and patient-derived xenograft models further identified the role of circINSIG1 in CRC progression and potential therapeutic target of CRC. Conclusions circINSIG1 presents an epigenetic mechanism which provides insights into the crosstalk between hypoxia and cholesterol metabolism, and provides a promising therapeutic target for the treatment of CRC.
科研通智能强力驱动
Strongly Powered by AbleSci AI