Design and Experimental Validation of Deep Reinforcement Learning-Based Fast Trajectory Planning and Control for Mobile Robot in Unknown Environment

航路点 强化学习 计算机科学 弹道 人工智能 深度学习 人工神经网络 运动规划 移动机器人 任务(项目管理) 机器人 实时计算 机器学习 模拟 工程类 物理 系统工程 天文
作者
Runqi Chai,Hanlin Niu,Joaquín Carrasco,Farshad Arvin,Hujun Yin,Barry Lennox
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5778-5792 被引量:107
标识
DOI:10.1109/tnnls.2022.3209154
摘要

This article is concerned with the problem of planning optimal maneuver trajectories and guiding the mobile robot toward target positions in uncertain environments for exploration purposes. A hierarchical deep learning-based control framework is proposed which consists of an upper level motion planning layer and a lower level waypoint tracking layer. In the motion planning phase, a recurrent deep neural network (RDNN)-based algorithm is adopted to predict the optimal maneuver profiles for the mobile robot. This approach is built upon a recently proposed idea of using deep neural networks (DNNs) to approximate the optimal motion trajectories, which has been validated that a fast approximation performance can be achieved. To further enhance the network prediction performance, a recurrent network model capable of fully exploiting the inherent relationship between preoptimized system state and control pairs is advocated. In the lower level, a deep reinforcement learning (DRL)-based collision-free control algorithm is established to achieve the waypoint tracking task in an uncertain environment (e.g., the existence of unexpected obstacles). Since this approach allows the control policy to directly learn from human demonstration data, the time required by the training process can be significantly reduced. Moreover, a noisy prioritized experience replay (PER) algorithm is proposed to improve the exploring rate of control policy. The effectiveness of applying the proposed deep learning-based control is validated by executing a number of simulation and experimental case studies. The simulation result shows that the proposed DRL method outperforms the vanilla PER algorithm in terms of training speed. Experimental videos are also uploaded, and the corresponding results confirm that the proposed strategy is able to fulfill the autonomous exploration mission with improved motion planning performance, enhanced collision avoidance ability, and less training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2251877528完成签到,获得积分10
1秒前
林梓发布了新的文献求助10
2秒前
闪闪的妙竹完成签到 ,获得积分10
3秒前
迷路的朋友完成签到,获得积分10
3秒前
崔宁宁完成签到 ,获得积分10
4秒前
烟花应助都是采纳,获得10
4秒前
李白乘完成签到 ,获得积分10
6秒前
科研小菜狗关注了科研通微信公众号
7秒前
情怀应助Simonking采纳,获得10
8秒前
11秒前
钦影发布了新的文献求助10
11秒前
冷艳的竺完成签到,获得积分10
12秒前
13秒前
chen完成签到,获得积分10
14秒前
14秒前
15秒前
小莫发布了新的文献求助10
16秒前
灵巧慕凝完成签到,获得积分10
17秒前
冷艳的竺发布了新的文献求助10
18秒前
Ogai完成签到,获得积分10
20秒前
Leslie发布了新的文献求助10
20秒前
Jasper应助Simonking采纳,获得10
20秒前
Alien完成签到,获得积分10
21秒前
许慢慢完成签到,获得积分20
22秒前
冰糖葫芦娃完成签到 ,获得积分10
24秒前
hammer完成签到,获得积分10
25秒前
26秒前
27秒前
28秒前
lm完成签到 ,获得积分10
28秒前
Kyone完成签到,获得积分10
29秒前
赵小胖完成签到,获得积分10
32秒前
都是发布了新的文献求助10
32秒前
吴丽雪发布了新的文献求助10
32秒前
tuzhifengyin完成签到,获得积分10
33秒前
NexusExplorer应助学术小白采纳,获得10
34秒前
35秒前
keke完成签到,获得积分10
35秒前
35秒前
彳亍完成签到 ,获得积分10
35秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816942
求助须知:如何正确求助?哪些是违规求助? 3360342
关于积分的说明 10407653
捐赠科研通 3078322
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 814001
科研通“疑难数据库(出版商)”最低求助积分说明 767958