Differential Diagnosis of Hematologic and Solid Tumors Using Targeted Transcriptome and Artificial Intelligence

转录组 血液肿瘤 计算生物学 实体瘤 生物 计算机科学 人工智能 遗传学 癌症 基因 基因表达
作者
Hong Zhang,Muhammad Asif Qureshi,Mohsin Wahid,Ahmad Charifa,Aamir Ehsan,Andrew Ip,Ivan De Dios,Wanlong Ma,Ipsa Sharma,James McCloskey,Michèle L. Donato,David S. Siegel,Martín Gutiérrez,Andrew L. Pecora,André Goy,Maher Albitar
出处
期刊:American Journal of Pathology [Elsevier]
卷期号:193 (1): 51-59 被引量:28
标识
DOI:10.1016/j.ajpath.2022.09.006
摘要

Diagnosis and classification of tumors is increasingly dependent on biomarkers. RNA expression profiling using next-generation sequencing provides reliable and reproducible information on the biology of cancer. This study investigated targeted transcriptome and artificial intelligence for differential diagnosis of hematologic and solid tumors. RNA samples from hematologic neoplasms (N = 2606), solid tumors (N = 2038), normal bone marrow (N = 782), and lymph node control (N = 24) were sequenced using next-generation sequencing using a targeted 1408-gene panel. Twenty subtypes of hematologic neoplasms and 24 subtypes of solid tumors were identified. Machine learning was used for diagnosis between two classes. Geometric mean naïve Bayesian classifier was used for differential diagnosis across 45 diagnostic entities with assigned rankings. Machine learning showed high accuracy in distinguishing between two diagnoses, with area under the curve varying between 1 and 0.841. Geometric mean naïve Bayesian algorithm was trained using 3045 samples and tested on 1415 samples, and showed correct first-choice diagnosis in 100%, 88%, 85%, 82%, 88%, 72%, and 72% of acute lymphoblastic leukemia, acute myeloid leukemia, diffuse large B-cell lymphoma, colorectal cancer, lung cancer, chronic lymphocytic leukemia, and follicular lymphoma cases, respectively. The data indicate that targeted transcriptome combined with artificial intelligence are highly useful for diagnosis and classification of various cancers. Mutation profiles and clinical information can improve these algorithms and minimize errors in diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就123发布了新的文献求助10
刚刚
刚刚
1秒前
优美的紫菱完成签到,获得积分10
1秒前
2秒前
哈哈哈发布了新的文献求助10
7秒前
8秒前
11秒前
对方正在看文献完成签到,获得积分10
11秒前
11秒前
12秒前
大渡河完成签到,获得积分10
13秒前
HeAuBook完成签到,获得积分0
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
kklkimo完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
ttldhbds完成签到,获得积分10
22秒前
23秒前
小明应助xsc采纳,获得10
23秒前
温柔延恶完成签到,获得积分10
23秒前
最长的旅途完成签到,获得积分20
24秒前
24秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
科研通AI6.1应助小砖块采纳,获得10
25秒前
酷波er应助修越采纳,获得10
25秒前
25秒前
26秒前
yll发布了新的文献求助10
26秒前
26秒前
甜欣028发布了新的文献求助10
28秒前
醉玉颓山完成签到,获得积分10
28秒前
开心思烟发布了新的文献求助10
28秒前
小马甲应助zh采纳,获得10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737072
求助须知:如何正确求助?哪些是违规求助? 5370628
关于积分的说明 15334769
捐赠科研通 4880833
什么是DOI,文献DOI怎么找? 2623041
邀请新用户注册赠送积分活动 1571886
关于科研通互助平台的介绍 1528738