数学
等距(黎曼几何)
公制(单位)
黎曼流形
纯数学
操作员(生物学)
歧管(流体力学)
数学分析
预印本
物理
基因
经济
工程类
转录因子
量子力学
抑制因子
化学
运营管理
生物化学
机械工程
作者
Mourad Choulli,El Maati Ouhabaz
标识
DOI:10.1142/s0219199723500578
摘要
We prove that the metric tensor [Formula: see text] of a complete Riemannian manifold is uniquely determined, up to isometry, from the knowledge of a local source-to-solution operator associated with a fractional power of the Laplace–Beltrami operator [Formula: see text]. Our result holds under the condition that the metric tensor [Formula: see text] is known in an arbitrary small subdomain. We also consider the case of closed manifolds and provide an improvement of the main result in [A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderón problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].
科研通智能强力驱动
Strongly Powered by AbleSci AI