GraphVAMPnets for uncovering slow collective variables of self-assembly dynamics

成对比较 计算机科学 明细余额 降维 齐次空间 维数之咒 自组装 图形 不变(物理) 统计物理学 理论计算机科学 数学 人工智能 物理 几何学 纳米技术 数学物理 材料科学
作者
Bojun Liu,Mingyi Xue,Yunrui Qiu,Kirill A. Konovalov,Michael O’Connor,Xuhui Huang
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (9) 被引量:12
标识
DOI:10.1063/5.0158903
摘要

Uncovering slow collective variables (CVs) of self-assembly dynamics is important to elucidate its numerous kinetic assembly pathways and drive the design of novel structures for advanced materials through the bottom-up approach. However, identifying the CVs for self-assembly presents several challenges. First, self-assembly systems often consist of identical monomers, and the feature representations should be invariant to permutations and rotational symmetries. Physical coordinates, such as aggregate size, lack high-resolution detail, while common geometric coordinates like pairwise distances are hindered by the permutation and rotational symmetry challenges. Second, self-assembly is usually a downhill process, and the trajectories often suffer from insufficient sampling of backward transitions that correspond to the dissociation of self-assembled structures. Popular dimensionality reduction methods, such as time-structure independent component analysis, impose detailed balance constraints, potentially obscuring the true dynamics of self-assembly. In this work, we employ GraphVAMPnets, which combines graph neural networks with a variational approach for Markovian process (VAMP) theory to identify the slow CVs of the self-assembly processes. First, GraphVAMPnets bears the advantages of graph neural networks, in which the graph embeddings can represent self-assembly structures in high-resolution while being invariant to permutations and rotational symmetries. Second, it is built upon VAMP theory, which studies Markov processes without forcing detailed balance constraints, which addresses the out-of-equilibrium challenge in the self-assembly process. We demonstrate GraphVAMPnets for identifying slow CVs of self-assembly kinetics in two systems: the aggregation of two hydrophobic molecules and the self-assembly of patchy particles. We expect that our GraphVAMPnets can be widely applied to molecular self-assembly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈的松鼠完成签到 ,获得积分10
1秒前
1秒前
科研通AI5应助dara997采纳,获得10
1秒前
yue88发布了新的文献求助10
2秒前
2秒前
woxiangbiye发布了新的文献求助10
2秒前
li发布了新的文献求助10
2秒前
TT完成签到,获得积分10
2秒前
迷路达完成签到,获得积分10
3秒前
猪猪hero发布了新的文献求助10
3秒前
3秒前
研友_85YNe8发布了新的文献求助10
3秒前
4秒前
CC发布了新的文献求助10
4秒前
4秒前
平淡的天宇完成签到,获得积分10
4秒前
chowjb完成签到,获得积分10
5秒前
科目二三次郎完成签到,获得积分10
5秒前
7秒前
7秒前
CQ完成签到,获得积分10
7秒前
FBI汪宁发布了新的文献求助10
8秒前
8秒前
liu发布了新的文献求助10
8秒前
FashionBoy应助suihan采纳,获得20
9秒前
顺顺发布了新的文献求助10
9秒前
科研通AI5应助kiwi采纳,获得10
9秒前
小鹿斑斑比完成签到,获得积分10
9秒前
10秒前
小马甲应助不想当金牛座采纳,获得10
10秒前
10秒前
宋莱文完成签到,获得积分10
10秒前
10秒前
zhangzhang1145完成签到 ,获得积分10
10秒前
10秒前
11秒前
威武紫青发布了新的文献求助10
11秒前
taizaizi应助liuxuying采纳,获得10
11秒前
土豆完成签到 ,获得积分10
12秒前
JUZI发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796912
求助须知:如何正确求助?哪些是违规求助? 3342196
关于积分的说明 10310282
捐赠科研通 3058986
什么是DOI,文献DOI怎么找? 1678595
邀请新用户注册赠送积分活动 806150
科研通“疑难数据库(出版商)”最低求助积分说明 762914