随机偏微分方程
一阶偏微分方程
偏微分方程
可分偏微分方程
指数积分器
数值偏微分方程
独立方程
非线性系统
微分方程
特征线法
数学
哈密顿量(控制论)
物理
数学分析
应用数学
常微分方程
微分代数方程
量子力学
数学优化
作者
Shi Jin,Nana Liu,Yue Yu
出处
期刊:Physical review
[American Physical Society]
日期:2023-09-12
卷期号:108 (3)
被引量:38
标识
DOI:10.1103/physreva.108.032603
摘要
We study a recently introduced simple method [S. Jin, N. Liu, and Y. Yu, Quantum simulation of partial differential equations via Schr\"odingerisation, arXiv:2212.13969] for solving general linear partial differential equations with quantum simulation. This method converts linear partial differential equations into a Hamiltonian system, using a simple transformation called the warped phase transformation. Here we provide a more-in-depth technical discussion and expand on this approach in a more detailed and pedagogical way. We apply this to examples of partial differential equations, including heat, convection, Fokker-Planck, linear Boltzmann, and Black-Scholes equations. This approach can also be extended to general linear partial differential equations, including the Vlasov-Fokker-Planck equation and the Liouville representation equation for nonlinear ordinary differential equations. Extension to higher-order time derivatives is also possible.
科研通智能强力驱动
Strongly Powered by AbleSci AI