Validation of machine‐learning model for first‐trimester prediction of pre‐eclampsia using cohort from PREVAL study

医学 子痫 产科 怀孕 队列 孕早期 胎儿 内科学 遗传学 生物
作者
M. M. Gil,Diana Cuenca-Gómez,Valeria Rollé,Miriam Pertegal,C Díaz,R. Revello,B. Adiego,Manel Mendoza,F. S. Molina,B. Santacruz,Z. Ansbacher‐Feldman,Hamutal Meiri,Raquel Martin-Alonso,Yoram Louzoun,C. de Paco Matallana
出处
期刊:Ultrasound in Obstetrics & Gynecology [Wiley]
卷期号:63 (1): 68-74 被引量:11
标识
DOI:10.1002/uog.27478
摘要

ABSTRACT Objective Effective first‐trimester screening for pre‐eclampsia (PE) can be achieved using a competing‐risks model that combines risk factors from the maternal history with multiples of the median (MoM) values of biomarkers. A new model using artificial intelligence through machine‐learning methods has been shown to achieve similar screening performance without the need for conversion of raw data of biomarkers into MoM. This study aimed to investigate whether this model can be used across populations without specific adaptations. Methods Previously, a machine‐learning model derived with the use of a fully connected neural network for first‐trimester prediction of early (< 34 weeks), preterm (< 37 weeks) and all PE was developed and tested in a cohort of pregnant women in the UK. The model was based on maternal risk factors and mean arterial blood pressure (MAP), uterine artery pulsatility index (UtA‐PI), placental growth factor (PlGF) and pregnancy‐associated plasma protein‐A (PAPP‐A). In this study, the model was applied to a dataset of 10 110 singleton pregnancies examined in Spain who participated in the first‐trimester PE validation (PREVAL) study, in which first‐trimester screening for PE was carried out using the Fetal Medicine Foundation (FMF) competing‐risks model. The performance of screening was assessed by examining the area under the receiver‐operating‐characteristics curve (AUC) and detection rate (DR) at a 10% screen‐positive rate (SPR). These indices were compared with those derived from the application of the FMF competing‐risks model. The performance of screening was poor if no adjustment was made for the analyzer used to measure PlGF, which was different in the UK and Spain. Therefore, adjustment for the analyzer used was performed using simple linear regression. Results The DRs at 10% SPR for early, preterm and all PE with the machine‐learning model were 84.4% (95% CI, 67.2–94.7%), 77.8% (95% CI, 66.4–86.7%) and 55.7% (95% CI, 49.0–62.2%), respectively, with the corresponding AUCs of 0.920 (95% CI, 0.864–0.975), 0.913 (95% CI, 0.882–0.944) and 0.846 (95% CI, 0.820–0.872). This performance was achieved with the use of three of the biomarkers (MAP, UtA‐PI and PlGF); inclusion of PAPP‐A did not provide significant improvement in DR. The machine‐learning model had similar performance to that achieved by the FMF competing‐risks model (DR at 10% SPR, 82.7% (95% CI, 69.6–95.8%) for early PE, 72.7% (95% CI, 62.9–82.6%) for preterm PE and 55.1% (95% CI, 48.8–61.4%) for all PE) without requiring specific adaptations to the population. Conclusions A machine‐learning model for first‐trimester prediction of PE based on a neural network provides effective screening for PE that can be applied in different populations. However, before doing so, it is essential to make adjustments for the analyzer used for biochemical testing. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向的清炎完成签到,获得积分20
刚刚
llll发布了新的文献求助10
2秒前
小熊完成签到,获得积分10
3秒前
3秒前
www完成签到,获得积分10
4秒前
冷先森EPC完成签到,获得积分10
4秒前
优美水彤发布了新的文献求助10
4秒前
再夕予发布了新的文献求助10
5秒前
5秒前
llll完成签到,获得积分10
8秒前
8R60d8应助cumtxzs采纳,获得10
9秒前
田様应助cumtxzs采纳,获得10
9秒前
9秒前
清秀傲之关注了科研通微信公众号
10秒前
10秒前
12秒前
能干的冷风完成签到,获得积分10
12秒前
欣喜亚男完成签到,获得积分10
14秒前
14秒前
sky完成签到,获得积分10
15秒前
DAKUMA应助lili采纳,获得10
15秒前
16秒前
共享精神应助噼里啪啦采纳,获得10
16秒前
华西发布了新的文献求助10
16秒前
17秒前
情怀应助勤恳的珊采纳,获得10
17秒前
优美水彤完成签到,获得积分10
18秒前
18秒前
freesia完成签到,获得积分20
18秒前
jenningseastera应助Hungrylunch采纳,获得10
19秒前
20秒前
YH应助陈晓迪1992采纳,获得200
21秒前
舒适薯片发布了新的文献求助10
21秒前
youyou1990发布了新的文献求助10
22秒前
youyou1990发布了新的文献求助10
22秒前
youyou1990发布了新的文献求助10
22秒前
pangpang1992完成签到 ,获得积分10
24秒前
zzzpf发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842887
求助须知:如何正确求助?哪些是违规求助? 3384898
关于积分的说明 10538020
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823598
科研通“疑难数据库(出版商)”最低求助积分说明 774149