A nomogram for predicting hospital mortality of critical ill patients with sepsis and cancer: a retrospective cohort study based on MIMIC-IV and eICU-CRD

医学 列线图 回顾性队列研究 重症监护室 败血症 癌症 重症监护 曲线下面积 内科学 急诊医学 重症监护医学
作者
Zhennan Yuan,Yu‐juan Xue,Hai-Jun Wang,Shi-ning Qu,Chulin Huang,Hao Wang,Hao Zhang,Xue-zhong Xing
出处
期刊:BMJ Open [BMJ]
卷期号:13 (9): e072112-e072112 被引量:5
标识
DOI:10.1136/bmjopen-2023-072112
摘要

Objective Sepsis remains a high cause of death, particularly in immunocompromised patients with cancer. The study was to develop a model to predict hospital mortality of septic patients with cancer in intensive care unit (ICU). Design Retrospective observational study. Setting Medical Information Mart for Intensive Care IV (MIMIC IV) and eICU Collaborative Research Database (eICU-CRD). Participants A total of 3796 patients in MIMIC IV and 549 patients in eICU-CRD were included. Primary outcome measures The model was developed based on MIMIC IV. The internal validation and external validation were based on MIMIC IV and eICU-CRD, respectively. Candidate factors were processed with the least absolute shrinkage and selection operator regression and cross-validation. Hospital mortality was predicted by the multivariable logistical regression and visualised by the nomogram. The model was assessed by the area under the curve (AUC), calibration curve and decision curve analysis curve. Results The model exhibited favourable discrimination (AUC: 0.726 (95% CI: 0.709 to 0.744) and 0.756 (95% CI: 0.712 to 0.801)) in the internal and external validation sets, respectively, and better calibration capacity than Acute Physiology and Chronic Health Evaluation IV in external validation. Conclusions Despite that the predicted model was based on a retrospective study, it may also be helpful to predict the hospital morality of patients with solid cancer and sepsis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nextconnie发布了新的文献求助10
刚刚
浮游应助欧尼酱采纳,获得10
1秒前
charitial发布了新的文献求助10
1秒前
追寻依风发布了新的文献求助10
2秒前
2秒前
大个应助绝不熬夜到2点采纳,获得10
2秒前
Rylee完成签到,获得积分10
2秒前
感动的雁枫完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
sunshine完成签到,获得积分10
4秒前
nehsiac完成签到,获得积分10
5秒前
xliiii发布了新的文献求助10
6秒前
lhd发布了新的文献求助10
6秒前
天赐殊荣完成签到,获得积分10
7秒前
英俊的铭应助白羽丫采纳,获得10
8秒前
123发布了新的文献求助30
8秒前
11秒前
兴奋晋鹏完成签到,获得积分10
11秒前
13秒前
13秒前
zcq完成签到 ,获得积分10
14秒前
田様应助MM11111采纳,获得10
15秒前
jjffyy完成签到 ,获得积分10
16秒前
电闪发布了新的文献求助10
17秒前
滴滴完成签到,获得积分10
17秒前
AAA发布了新的文献求助10
18秒前
青易发布了新的文献求助10
18秒前
浮游应助wanghuan采纳,获得10
19秒前
chen发布了新的文献求助10
19秒前
踏雪寻梅完成签到,获得积分10
19秒前
郑光英发布了新的文献求助10
22秒前
22秒前
晓兜完成签到,获得积分10
23秒前
枕安完成签到,获得积分10
24秒前
胡晓平发布了新的文献求助10
24秒前
Ava应助卤蛋采纳,获得20
25秒前
在水一方应助优乐美采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360565
求助须知:如何正确求助?哪些是违规求助? 4491182
关于积分的说明 13981625
捐赠科研通 4393796
什么是DOI,文献DOI怎么找? 2413638
邀请新用户注册赠送积分活动 1406466
关于科研通互助平台的介绍 1380932