Joint Computing, Pushing, and Caching Optimization for Mobile-Edge Computing Networks via Soft Actor–Critic Learning

计算机科学 边缘计算 软计算 移动边缘计算 移动计算 接头(建筑物) 分布式计算 GSM演进的增强数据速率 计算机网络 人工神经网络 人工智能 建筑工程 工程类
作者
Xiangyu Gao,Yaping Sun,Hao Chen,Xiaodong Xu,Shuguang Cui
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 9269-9281 被引量:4
标识
DOI:10.1109/jiot.2023.3323433
摘要

Mobile-edge computing (MEC) networks bring computing and storage capabilities closer to edge devices, which reduces latency and improves network performance. However, to further reduce transmission and computation costs while satisfying user-perceived quality of experience, a joint optimization in computing, pushing, and caching is needed. In this article, we formulate the joint-design problem in MEC networks as an infinite-horizon discounted-cost Markov decision process and solve it using a deep reinforcement learning (DRL)-based framework that enables the dynamic orchestration of computing, pushing, and caching. Through the deep networks embedded in the DRL structure, our framework can implicitly predict user future requests and push or cache the appropriate content to effectively enhance system performance. One issue we encountered when considering three functions collectively is the curse of dimensionality for the action space. To address it, we relaxed the discrete action space into a continuous space and then adopted soft actor–critic learning to solve the optimization problem, followed by utilizing a vector quantization method to obtain the desired discrete action. Additionally, an action correction method was proposed to compress the action space further and accelerate the convergence. Our simulations under the setting of a general single-user, single-server MEC network with dynamic transmission link quality demonstrate that the proposed framework effectively decreases transmission bandwidth and computing cost by proactively pushing data on future demand to users and jointly optimizing the three functions. We also conduct extensive parameter tuning analysis, which shows that our approach outperforms the baselines under various parameter settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈发布了新的文献求助10
刚刚
聪慧剑封完成签到,获得积分20
刚刚
柔弱紊完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
上官若男应助秦琨采纳,获得10
1秒前
溜溜发布了新的文献求助10
2秒前
3秒前
清秀的鲂完成签到,获得积分10
3秒前
寒冷的寻菱完成签到,获得积分10
3秒前
星辰大海应助柔弱紊采纳,获得10
3秒前
柿子吖完成签到,获得积分10
4秒前
4秒前
5秒前
hwezhu发布了新的文献求助10
5秒前
5秒前
瘦瘦问旋完成签到,获得积分10
5秒前
永远爱刻晴完成签到 ,获得积分10
5秒前
希望天下0贩的0应助Sid采纳,获得10
5秒前
北大西洋巨魔徒手捏爆小行星完成签到,获得积分10
5秒前
威武的匕发布了新的文献求助10
5秒前
共享精神应助kkx采纳,获得10
6秒前
Etiquette发布了新的文献求助10
6秒前
善学以致用应助Xiao采纳,获得10
7秒前
7秒前
小吴同学发布了新的文献求助10
8秒前
8秒前
xuxiaotuan完成签到,获得积分10
9秒前
9秒前
9秒前
淡定十三发布了新的文献求助20
9秒前
li发布了新的文献求助10
10秒前
飞飞发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
2956645784完成签到,获得积分10
11秒前
123发布了新的文献求助10
12秒前
刘成财发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786195
求助须知:如何正确求助?哪些是违规求助? 3331852
关于积分的说明 10252592
捐赠科研通 3047153
什么是DOI,文献DOI怎么找? 1672437
邀请新用户注册赠送积分活动 801287
科研通“疑难数据库(出版商)”最低求助积分说明 760140