Mitochondrial fragmentation in liver cancer: Emerging player and promising therapeutic opportunities

癌症研究 重编程 肝细胞癌 转移 生物 自噬 癌细胞 癌症干细胞 癌症 免疫疗法 免疫系统 肝癌 干细胞 免疫学 细胞凋亡 细胞生物学 细胞 生物化学 遗传学
作者
Qian Wang,Pengfei Yu,Chaoxu Liu,Xianli He,Gang Wang
出处
期刊:Cancer Letters [Elsevier BV]
卷期号:549: 215912-215912 被引量:14
标识
DOI:10.1016/j.canlet.2022.215912
摘要

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide. Enhanced mitochondrial fragmentation (MF) is associated with poor prognosis in HCC patients. However, its molecular mechanism in HCC remains elusive. Although enhanced MF activates effector T cells and dendritic cells, it induces immunoescape by decreasing the number and cytotoxicity of natural killer cells in the HCC immune microenvironment. Therefore, the influence of MF on the activity of different immune cells is a great challenge. Enhanced MF contributes to maintaining stemness by promoting the asymmetric division of liver cancer stem cells (LCSCs), suggesting that MF may become a potential target for HCC recurrence, metastasis, and chemotherapy resistance. Moreover, mechanistic studies suggest that MF may promote tumour progression through autophagy, oxidative stress, and metabolic reprogramming. Human-induced hepatocyte organoids are a recently developed system that can be genetically manipulated to mimic cancer initiation and identify potential preventive treatments. We can use it to screen MF-related candidate inhibitors of HCC progression and further explore the role of MF in hepatocarcinogenesis. We herein describe the mechanisms by which MF contributes to HCC development, discuss potential therapeutic approaches, and highlight the possibility that MF modulation has a synergistic effect with immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
辛勤的囧发布了新的文献求助10
2秒前
4秒前
4秒前
小二郎应助aniu采纳,获得10
4秒前
别吃小米粥完成签到,获得积分10
5秒前
7秒前
Eva发布了新的文献求助20
7秒前
8秒前
9秒前
无限大山发布了新的文献求助10
9秒前
10秒前
11秒前
领导范儿应助雨之夏日采纳,获得200
11秒前
11秒前
汉堡包应助花凉采纳,获得10
11秒前
亿亿亿亿完成签到,获得积分10
12秒前
乐观小之应助wang采纳,获得10
13秒前
13秒前
松山少林学武功完成签到 ,获得积分10
13秒前
14秒前
研友_VZG7GZ应助Eva采纳,获得10
14秒前
15秒前
16秒前
发多多完成签到,获得积分10
17秒前
吱吱发布了新的文献求助10
17秒前
清梦发布了新的文献求助10
19秒前
帅小主完成签到,获得积分20
21秒前
angelinazh发布了新的文献求助10
23秒前
Ava应助安生采纳,获得10
25秒前
29秒前
daffodil发布了新的文献求助30
31秒前
兔兔跑路发布了新的文献求助20
31秒前
在水一方应助发多多采纳,获得10
32秒前
33秒前
wanci应助科研通管家采纳,获得100
34秒前
英俊的铭应助科研通管家采纳,获得10
34秒前
35秒前
英姑应助科研通管家采纳,获得10
35秒前
大模型应助科研通管家采纳,获得10
35秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836326
求助须知:如何正确求助?哪些是违规求助? 3378639
关于积分的说明 10505544
捐赠科研通 3098283
什么是DOI,文献DOI怎么找? 1706415
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772417