Dog Behavior Recognition Based on Multimodal Data from a Camera and Wearable Device

计算机科学 人工智能 可穿戴计算机 活动识别 模式识别(心理学) 传感器融合 计算机视觉 嵌入式系统
作者
Jinah Kim,Nammee Moon
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:12 (6): 3199-3199 被引量:20
标识
DOI:10.3390/app12063199
摘要

Although various studies on monitoring dog behavior have been conducted, methods that can minimize or compensate data noise are required. This paper proposes multimodal data-based dog behavior recognition that fuses video and sensor data using a camera and a wearable device. The video data represent the moving area of dogs to detect the dogs. The sensor data represent the movement of the dogs and extract features that affect dog behavior recognition. Seven types of behavior recognition were conducted, and the results of the two data types were used to recognize the dog’s behavior through a fusion model based on deep learning. Experimentation determined that, among FasterRCNN, YOLOv3, and YOLOv4, the object detection rate and behavior recognition accuracy were the highest when YOLOv4 was used. In addition, the sensor data showed the best performance when all statistical features were selected. Finally, it was confirmed that the performance of multimodal data-based fusion models was improved over that of single data-based models and that the CNN-LSTM-based model had the best performance. The method presented in this study can be applied for dog treatment or health monitoring, and it is expected to provide a simple way to estimate the amount of activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤唯完成签到,获得积分10
1秒前
3秒前
ohenry发布了新的文献求助10
3秒前
wubin69发布了新的文献求助200
4秒前
Ava应助xmhxpz采纳,获得10
4秒前
小慧发布了新的文献求助10
5秒前
归尘发布了新的文献求助10
5秒前
领导范儿应助舒服的惜灵采纳,获得10
5秒前
科研通AI5应助hyh采纳,获得10
8秒前
8秒前
老马哥完成签到 ,获得积分0
9秒前
14秒前
16秒前
17秒前
驿寄梅花发布了新的文献求助10
19秒前
嗯呐完成签到,获得积分10
21秒前
萱萱发布了新的文献求助10
22秒前
hyh发布了新的文献求助10
22秒前
27秒前
烟花应助驿寄梅花采纳,获得10
27秒前
xmhxpz发布了新的文献求助10
30秒前
迷路的芝麻完成签到 ,获得积分10
31秒前
Neo完成签到,获得积分10
31秒前
31秒前
CodeCraft应助carly采纳,获得20
32秒前
桐桐应助优秀藏鸟采纳,获得10
32秒前
35秒前
wzy5508完成签到 ,获得积分10
36秒前
Doctor甜关注了科研通微信公众号
36秒前
38秒前
小二郎应助xiao金采纳,获得10
39秒前
yue发布了新的文献求助10
40秒前
Ava应助LANER采纳,获得10
41秒前
42秒前
Roc完成签到,获得积分10
42秒前
45秒前
稳稳发布了新的文献求助10
46秒前
48秒前
忐忑的康完成签到 ,获得积分10
49秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325704
关于积分的说明 10224008
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669040
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648