A two-stage approach based on Bayesian deep learning for predicting remaining useful life of rolling element bearings

方位(导航) 滚动轴承 阶段(地层学) 过程(计算) 人工智能 贝叶斯概率 工程类 计算机科学 机器学习 数据挖掘 古生物学 物理 量子力学 振动 生物 操作系统
作者
Kaijian Chen,Jingna Liu,Wenwu Guo,Xizhao Wang
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:109: 108745-108745 被引量:6
标识
DOI:10.1016/j.compeleceng.2023.108745
摘要

Remaining useful life (RUL) prediction of rolling element bearings is critical to maintaining rotating machinery and lowering industrial costs. There are many RUL prediction techniques, but most of them ignore two factors that may have a significant impact on prediction accuracy. One is the detection of the first predicting time (FPT) while the other is the predictive uncertainty. This paper proposes a two-stage approach to incorporating both factors into the prediction process based on Bayesian deep learning (BDL). In stage one, the state change of the bearing is identified and the FPT is determined according to a proposed detection technique. In stage two, RUL prediction is performed according to a new BDL model, and the results provide RUL point estimates and quantification of predictive uncertainty. The proposed two-stage approach has been validated on two publicly available bearing datasets, and the experimental results have demonstrated the effectiveness of the proposed approach in detecting FPT and its superiority over competitive BDL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助11采纳,获得10
刚刚
共享精神应助温金凤采纳,获得10
1秒前
淡然宛凝完成签到 ,获得积分10
1秒前
小万福发布了新的文献求助10
1秒前
1秒前
3秒前
魔幻的雁兰完成签到,获得积分20
4秒前
4秒前
化白完成签到,获得积分10
4秒前
活泼的飞双完成签到,获得积分10
5秒前
没头脑和不高兴完成签到 ,获得积分10
7秒前
过路汪汪完成签到 ,获得积分10
7秒前
8秒前
华仔应助浮生采纳,获得10
9秒前
鑫xx完成签到,获得积分10
9秒前
123发布了新的文献求助10
10秒前
海边听海完成签到 ,获得积分0
11秒前
谨慎傲旋完成签到 ,获得积分10
13秒前
11发布了新的文献求助10
15秒前
焜少完成签到,获得积分10
16秒前
顾矜应助王优秀采纳,获得10
17秒前
阿琦完成签到 ,获得积分10
18秒前
22秒前
摆渡人发布了新的文献求助10
22秒前
二水完成签到,获得积分10
22秒前
桐桐应助科研通管家采纳,获得10
22秒前
spenley完成签到,获得积分10
22秒前
CipherSage应助科研通管家采纳,获得10
23秒前
AI_S应助科研通管家采纳,获得10
23秒前
AI_S应助科研通管家采纳,获得50
23秒前
Lucas应助科研通管家采纳,获得20
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
科研助手6应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843667
求助须知:如何正确求助?哪些是违规求助? 3385966
关于积分的说明 10543359
捐赠科研通 3106778
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823925
科研通“疑难数据库(出版商)”最低求助积分说明 774390