Sinkhorn Distance Minimization for Adaptive Semi-Supervised Social Network Alignment

计算机科学 亲密度 人工智能 图同构 投影(关系代数) 机器学习 社交网络(社会语言学) 对抗制 功能(生物学) 理论计算机科学 图形 算法 数学 生物 进化生物学 数学分析 万维网 折线图 社会化媒体
作者
Jie Xu,Chaozhuo Li,Feiran Huang,Zhoujun Li,Xing Xie,Philip S. Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 13340-13353 被引量:9
标识
DOI:10.1109/tnnls.2023.3267126
摘要

Social network alignment, aiming at linking identical identities across different social platforms, is a fundamental task in social graph mining. Most existing approaches are supervised models and require a large number of manually labeled data, which are infeasible in practice considering the yawning gap between social platforms. Recently, isomorphism across social networks is incorporated as complementary to link identities from the distribution level, which contributes to alleviating the dependency on sample-level annotations. Adversarial learning is adopted to learn a shared projection function by minimizing the distance between two social distributions. However, the hypothesis of isomorphism might not always hold true as social user behaviors are generally unpredictable, and thus a shared projection function is insufficient to handle the sophisticated cross-platform correlations. In addition, adversarial learning suffers from training instability and uncertainty, which may hinder model performance. In this article, we propose a novel meta-learning-based social network alignment model Meta-SNA to effectively capture the isomorphism and the unique characteristics of each identity. Our motivation lies in learning a shared meta-model to preserve the global cross-platform knowledge and an adaptor to learn a specific projection function for each identity. Sinkhorn distance is further introduced as the distribution closeness measurement to tackle the limitations of adversarial learning, which owns an explicitly optimal solution and can be efficiently computed by the matrix scaling algorithm. Empirically, we evaluate the proposed model over multiple datasets, and the experimental results demonstrate the superiority of Meta-SNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
星辰大海应助月亮采纳,获得10
2秒前
负责的方盒完成签到,获得积分10
3秒前
3秒前
勤奋太君发布了新的文献求助10
3秒前
3秒前
3秒前
zpz发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
wddd333333发布了新的文献求助10
4秒前
万能图书馆应助MNing采纳,获得10
4秒前
星期天完成签到,获得积分20
5秒前
5秒前
yanghe完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
youyouyou完成签到,获得积分20
7秒前
英俊的铭应助xjn采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
隐形曼青应助zpz采纳,获得10
8秒前
炙热迎波发布了新的文献求助10
9秒前
积极的誉关注了科研通微信公众号
9秒前
9秒前
9秒前
江添盛望发布了新的文献求助10
9秒前
li发布了新的文献求助10
10秒前
无心的天真完成签到 ,获得积分10
10秒前
LW发布了新的文献求助10
10秒前
gwh68964402gwh完成签到,获得积分10
10秒前
陌上之心完成签到 ,获得积分10
10秒前
小幸运发布了新的文献求助10
11秒前
11秒前
youyouyou发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717071
求助须知:如何正确求助?哪些是违规求助? 5243787
关于积分的说明 15280952
捐赠科研通 4867441
什么是DOI,文献DOI怎么找? 2613673
邀请新用户注册赠送积分活动 1563595
关于科研通互助平台的介绍 1521091