Federated Learning Survey: A Multi-Level Taxonomy of Aggregation Techniques, Experimental Insights, and Future Frontiers

计算机科学 可扩展性 数据科学 稳健性(进化) 数据聚合器 个性化 人工智能 机器学习 万维网 无线传感器网络 计算机网络 生物化学 化学 数据库 基因
作者
Meriem Arbaoui,Mohamed-El-Amine Brahmia,Abdellatif Rahmoun,Mourad Zghal
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
标识
DOI:10.1145/3678182
摘要

The emerging integration of IoT (Internet of Things) and AI (Artificial Intelligence) has unlocked numerous opportunities for innovation across diverse industries. However, growing privacy concerns and data isolation issues have inhibited this promising advancement. Unfortunately, traditional centralized machine learning (ML) methods have demonstrated their limitations in addressing these hurdles. In response to this ever-evolving landscape, Federated Learning (FL) has surfaced as a cutting-edge machine learning paradigm, enabling collaborative training across decentralized devices. FL allows users to jointly construct AI models without sharing their local raw data, ensuring data privacy, network scalability, and minimal data transfer. One essential aspect of FL revolves around proficient knowledge aggregation within a heterogeneous environment. Yet, the inherent characteristics of FL have amplified the complexity of its practical implementation compared to centralized ML. This survey delves into three prominent clusters of FL research contributions: personalization, optimization, and robustness. The objective is to provide a well-structured and fine-grained classification scheme related to these research areas through a unique methodology for selecting related work. Unlike other survey papers, we employed a hybrid approach that amalgamates bibliometric analysis and systematic scrutinizing to find the most influential work in the literature. Therefore, we examine challenges and contemporary techniques related to heterogeneity, efficiency, security, and privacy. Another valuable asset of this study is its comprehensive coverage of FL aggregation strategies, encompassing architectural features, synchronization methods, and several federation motivations. To further enrich our investigation, we provide practical insights into evaluating novel FL proposals and conduct experiments to assess and compare aggregation methods under IID and non-IID data distributions. Finally, we present a compelling set of research avenues that call for further exploration to open up a treasure of advancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Elio完成签到,获得积分10
1秒前
1秒前
科研狗发布了新的文献求助10
2秒前
lewis完成签到,获得积分10
2秒前
珠珠崽子完成签到 ,获得积分10
2秒前
3秒前
梦梦发布了新的文献求助10
3秒前
文都哲完成签到,获得积分20
3秒前
勤恳冰彤完成签到 ,获得积分10
3秒前
LilyChen应助中级奥术师采纳,获得30
4秒前
4秒前
听寒完成签到,获得积分10
4秒前
ShellyHan发布了新的文献求助10
4秒前
吕小布完成签到,获得积分10
4秒前
清明发布了新的文献求助10
5秒前
卫子完成签到,获得积分10
6秒前
在水一方应助朱先生采纳,获得10
6秒前
LEOhard完成签到,获得积分10
6秒前
科研通AI5应助loor采纳,获得10
7秒前
7秒前
7秒前
7秒前
SYLH应助玮哥不是伟哥采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
6666发布了新的文献求助10
8秒前
8秒前
9秒前
若枫完成签到,获得积分10
9秒前
u2u2完成签到 ,获得积分10
9秒前
明理的依柔完成签到,获得积分10
9秒前
Gong完成签到,获得积分10
9秒前
9秒前
小小小鲤鱼完成签到,获得积分10
10秒前
10秒前
10秒前
直率的冰海完成签到,获得积分10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868