LDConv: Linear deformable convolution for improving convolutional neural networks

卷积神经网络 卷积(计算机科学) 计算机科学 人工智能 计算机视觉 人工神经网络
作者
Xin Zhang,Yingze Song,Tingting Song,Degang Yang,Yichen Ye,Jie Zhou,Liming Zhang
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:149: 105190-105190 被引量:15
标识
DOI:10.1016/j.imavis.2024.105190
摘要

Neural networks based on convolutional operations have achieved remarkable results in the field of deep learning, but there are two inherent flaws in standard convolutional operations. On the one hand, the convolution operation is confined to a local window, so it cannot capture information from other locations, and its sampled shapes is fixed. On the other hand, the size of the convolutional kernel is fixed to k × k, which is a fixed square shape, and the number of parameters tends to grow squarely with size. Although Deformable Convolution (Deformable Conv) address the problem of fixed sampling of standard convolutions, the number of parameters also tends to grow in a squared manner, and Deformable Conv do not explore the effect of different initial sample shapes on network performance. In response to the above questions, the Linear Deformable Convolution (LDConv) is explored in this work, which gives the convolution kernel an arbitrary number of parameters and arbitrary sampled shapes to provide richer options for the trade-off between network overhead and performance. In LDConv, a novel coordinate generation algorithm is defined to generate different initial sampled positions for convolutional kernels of arbitrary size. To adapt to changing targets, offsets are introduced to adjust the shape of the samples at each position. LDConv corrects the growth trend of the number of parameters for standard convolution and Deformable Conv to a linear growth. Compared to Deformable Conv, LDConv provides richer choices and can be equivalent to deformable convolution when the number of parameters of LDConv is set to the square of K. Differently, this paper also explores the effect of neural networks by using LDConv with the same size and different initial sampling shapes. LDConv completes the process of efficient feature extraction by irregular convolutional operations and brings more exploration options for convolutional sampled shapes. Object detection experiments on representative datasets COCO2017, VOC 7 + 12, and VisDrone-DET2021 fully demonstrate the advantages of LDConv. LDConv is a plug-and-play convolutional operation that can replace the convolutional operation to improve network performance. The code for the relevant tasks can be found at https://github.com/CV-ZhangXin/LDConv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待的惜海完成签到,获得积分10
1秒前
1秒前
2秒前
Lin完成签到 ,获得积分10
3秒前
4秒前
搜集达人应助执着的若灵采纳,获得10
5秒前
Nancy发布了新的文献求助10
5秒前
852应助zyp采纳,获得10
6秒前
小马甲应助Wjh123456采纳,获得10
7秒前
路奇发布了新的文献求助30
8秒前
F503完成签到,获得积分10
9秒前
张奥星发布了新的文献求助10
9秒前
tao完成签到,获得积分20
9秒前
现代的烤鸡完成签到,获得积分10
9秒前
管理想发布了新的文献求助10
9秒前
10秒前
11秒前
13秒前
iNk应助HY采纳,获得10
13秒前
深情安青应助passby采纳,获得10
14秒前
自行设置完成签到,获得积分10
14秒前
14秒前
项初蝶发布了新的文献求助20
14秒前
木木完成签到,获得积分10
15秒前
yingying发布了新的文献求助10
15秒前
cdercder应助浮生采纳,获得10
15秒前
yy发布了新的文献求助10
16秒前
半醉哥完成签到,获得积分10
17秒前
Ava应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得30
18秒前
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得30
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
彭tiantian完成签到 ,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793698
求助须知:如何正确求助?哪些是违规求助? 3338599
关于积分的说明 10290546
捐赠科研通 3055010
什么是DOI,文献DOI怎么找? 1676285
邀请新用户注册赠送积分活动 804326
科研通“疑难数据库(出版商)”最低求助积分说明 761836