LDConv: Linear deformable convolution for improving convolutional neural networks

卷积神经网络 卷积(计算机科学) 计算机科学 人工智能 计算机视觉 人工神经网络
作者
Xin Zhang,Yingze Song,Tingting Song,Degang Yang,Yichen Ye,Jie Zhou,Liming Zhang
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:149: 105190-105190 被引量:119
标识
DOI:10.1016/j.imavis.2024.105190
摘要

Neural networks based on convolutional operations have achieved remarkable results in the field of deep learning, but there are two inherent flaws in standard convolutional operations. On the one hand, the convolution operation is confined to a local window, so it cannot capture information from other locations, and its sampled shapes is fixed. On the other hand, the size of the convolutional kernel is fixed to k × k, which is a fixed square shape, and the number of parameters tends to grow squarely with size. Although Deformable Convolution (Deformable Conv) address the problem of fixed sampling of standard convolutions, the number of parameters also tends to grow in a squared manner, and Deformable Conv do not explore the effect of different initial sample shapes on network performance. In response to the above questions, the Linear Deformable Convolution (LDConv) is explored in this work, which gives the convolution kernel an arbitrary number of parameters and arbitrary sampled shapes to provide richer options for the trade-off between network overhead and performance. In LDConv, a novel coordinate generation algorithm is defined to generate different initial sampled positions for convolutional kernels of arbitrary size. To adapt to changing targets, offsets are introduced to adjust the shape of the samples at each position. LDConv corrects the growth trend of the number of parameters for standard convolution and Deformable Conv to a linear growth. Compared to Deformable Conv, LDConv provides richer choices and can be equivalent to deformable convolution when the number of parameters of LDConv is set to the square of K. Differently, this paper also explores the effect of neural networks by using LDConv with the same size and different initial sampling shapes. LDConv completes the process of efficient feature extraction by irregular convolutional operations and brings more exploration options for convolutional sampled shapes. Object detection experiments on representative datasets COCO2017, VOC 7 + 12, and VisDrone-DET2021 fully demonstrate the advantages of LDConv. LDConv is a plug-and-play convolutional operation that can replace the convolutional operation to improve network performance. The code for the relevant tasks can be found at https://github.com/CV-ZhangXin/LDConv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助优美紫槐采纳,获得10
刚刚
1秒前
2秒前
景辞发布了新的文献求助10
2秒前
谦让安双发布了新的文献求助10
2秒前
共享精神应助独云采纳,获得10
2秒前
晕晕完成签到 ,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
春深半夏发布了新的文献求助10
5秒前
5秒前
余一台发布了新的文献求助10
5秒前
5秒前
科目三应助迷人书蝶采纳,获得10
6秒前
xxd发布了新的文献求助10
6秒前
张静怡发布了新的文献求助10
6秒前
缓慢醉卉完成签到 ,获得积分10
6秒前
现安发布了新的文献求助30
7秒前
ding应助心想事成采纳,获得10
7秒前
Jane发布了新的文献求助10
7秒前
8秒前
spc68应助Sickey采纳,获得10
8秒前
10秒前
王达庆发布了新的文献求助10
10秒前
10秒前
10秒前
思源应助xxd采纳,获得10
12秒前
喜悦饼干完成签到 ,获得积分10
12秒前
墨扬发布了新的文献求助10
14秒前
bkagyin应助海边的卡卡罗特采纳,获得30
14秒前
17完成签到,获得积分10
14秒前
14秒前
是ok耶完成签到,获得积分10
15秒前
LX完成签到,获得积分10
15秒前
动听的时光完成签到,获得积分10
15秒前
唐寒溪发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
yee发布了新的文献求助10
16秒前
斯文败类应助longer采纳,获得10
16秒前
Ellen完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721428
求助须知:如何正确求助?哪些是违规求助? 5265735
关于积分的说明 15294026
捐赠科研通 4870760
什么是DOI,文献DOI怎么找? 2615607
邀请新用户注册赠送积分活动 1565381
关于科研通互助平台的介绍 1522454