A Study of Digitization Strategies and Audience Interaction in New Media Art Exhibitions in Museums

展示 数字化 视觉艺术 媒体艺术 艺术 数字媒体 社会学 博物馆学 媒体研究 多媒体 美学 计算机科学 万维网 电信
作者
Peilin Dou,Xueyuan Wang
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns-2024-2848
摘要

Abstract With the rapid development of digital technology, the digital system based on the fuzzy kano model provides a digital strategy for new media art exhibition museum information dissemination, digital display, and other fields. In this paper, the fuzzy Kano model is used to design the digital museum, and the system design starts from the five elements of user experience. The digital system is designed from the levels of the strategy layer, scope layer, structural layer, framework layer, and performance layer, respectively. Clustering the sensors first is used to obtain the functional area in the classification of audience behavior. The optimal clustering results can be achieved through spectral clustering of sensor graphs. Clustering is proposed using the typical movement pattern extraction algorithm. Optimization indexes are set to achieve optimal typical movement patterns. The auxiliary sensors capture the interactive movements of the audience with the artwork and collect logical information. Behavioral pattern templates for various types of viewers are constructed using viewer attribute labels. In the user classification method based on behavioral patterns, edges in the graph are used as features, and an optimization problem is constructed to solve the importance of each feature for audience classification. The implementation of interactive features greatly enhances the interactive experience of the audience. It makes the audience’s novelty evaluation score of the system reach 8.671. The classification algorithm based on the behavioral model performs well in all evaluation indexes, which indicates that the system proposed in this paper meets the audience’s digital and interactive needs for new media art exhibitions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yesir发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
麻木子发布了新的文献求助10
2秒前
3秒前
慕青应助橘涂初九采纳,获得10
3秒前
Ava应助如意幻枫采纳,获得10
4秒前
爱撒娇的寻真完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
Yang发布了新的文献求助10
5秒前
6秒前
8秒前
赘婿应助Chanlewu采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
Akim应助星辰坠于海采纳,获得10
10秒前
10秒前
yesir完成签到,获得积分10
11秒前
UPUP0707发布了新的文献求助10
11秒前
FashionBoy应助胖虎不胖采纳,获得10
12秒前
李华完成签到 ,获得积分10
12秒前
大模型应助Always采纳,获得10
12秒前
英俊的铭应助抱拳了铁子采纳,获得10
12秒前
思源应助梓小忆采纳,获得10
13秒前
辛勤金连发布了新的文献求助10
13秒前
闪闪的YOSH完成签到,获得积分10
13秒前
13秒前
lumin发布了新的文献求助10
14秒前
wanci应助yu采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
科研通AI2S应助忧虑的安青采纳,获得10
16秒前
fbzb完成签到,获得积分10
16秒前
17秒前
橘涂初九发布了新的文献求助10
17秒前
希望天下0贩的0应助Infinit采纳,获得30
17秒前
无花果应助Ee采纳,获得10
17秒前
王土豆完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513581
求助须知:如何正确求助?哪些是违规求助? 4607843
关于积分的说明 14506939
捐赠科研通 4543374
什么是DOI,文献DOI怎么找? 2489516
邀请新用户注册赠送积分活动 1471463
关于科研通互助平台的介绍 1443464