Multimodal Distillation Pre-Training Model for Ultrasound Dynamic Images Annotation

计算机科学 人工智能 编码器 特征提取 注释 计算机视觉 特征(语言学) 医学影像学 语义学(计算机科学) 模式识别(心理学) 自然语言处理 机器学习 语言学 操作系统 哲学 程序设计语言
作者
Xiaojun Chen,Ke Jia,Yaning Zhang,Jianping Gou,Anna Shen,Shaohua Wan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (5): 3124-3136 被引量:5
标识
DOI:10.1109/jbhi.2024.3438254
摘要

With the development of medical technology, ultrasonography has become an important diagnostic method in doctors' clinical work. However, compared with the static medical image processing work such as CT, MRI, etc., which has more research bases, ultrasonography is a dynamic medical image similar to video, which is captured and generated by a real-time moving probe, so how to deal with the video data in the medical field and cross modal extraction of the textual semantics in the medical video is a difficult problem that needs to be researched. For this reason, this paper proposes a pre-training model of multimodal distillation and fusion coding for processing the semantic relationship between ultrasound dynamic Images and text. Firstly, by designing the fusion encoder, the visual geometric features of tissues and organs in ultrasound dynamic images, the overall visual appearance descriptive features and the named entity linguistic features are fused to form a unified visual-linguistic feature, so that the model obtains richer visual, linguistic cues aggregation and alignment ability. Then, the pre-training model is augmented by multimodal knowledge distillation to improve the learning ability of the model. The final experimental results on multiple datasets show that the multimodal distillation pre-training model generally improves the fusion ability of various types of features in ultrasound dynamic images, and realizes the automated and accurate annotation of ultrasound dynamic images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏感菲鹰发布了新的文献求助10
刚刚
爱科研的桂鑫儿完成签到,获得积分20
1秒前
2秒前
2秒前
LLI发布了新的文献求助10
3秒前
科研通AI6应助ding采纳,获得30
4秒前
4秒前
5秒前
6秒前
7秒前
7秒前
fussguai完成签到,获得积分10
8秒前
Jasper应助机灵瑛采纳,获得10
8秒前
余正扬发布了新的文献求助10
8秒前
9秒前
10000SCI发布了新的文献求助10
12秒前
yy发布了新的文献求助10
12秒前
15秒前
15秒前
16秒前
隐形曼青应助坦率灵槐采纳,获得10
17秒前
mrpy应助LY采纳,获得200
17秒前
linxc07完成签到,获得积分10
17秒前
17秒前
共享精神应助10000SCI采纳,获得10
17秒前
hhh完成签到,获得积分20
18秒前
JamesPei应助淡如菊采纳,获得10
19秒前
20秒前
量子星尘发布了新的文献求助10
22秒前
kefan_123发布了新的文献求助80
23秒前
橘涂初九发布了新的文献求助10
23秒前
kaola发布了新的文献求助10
23秒前
23秒前
hhh发布了新的文献求助10
24秒前
Owen应助thchiang采纳,获得10
24秒前
26秒前
26秒前
打打应助甜蜜乐松采纳,获得10
26秒前
淡如菊完成签到,获得积分10
28秒前
小蘑菇应助黎乐荷采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626128
求助须知:如何正确求助?哪些是违规求助? 4711920
关于积分的说明 14957446
捐赠科研通 4780625
什么是DOI,文献DOI怎么找? 2554153
邀请新用户注册赠送积分活动 1515941
关于科研通互助平台的介绍 1476179