Multimodal Distillation Pre-training Model for Ultrasound Dynamic Images Annotation

计算机科学 人工智能 编码器 特征提取 注释 计算机视觉 特征(语言学) 医学影像学 语义学(计算机科学) 模式识别(心理学) 自然语言处理 机器学习 语言学 操作系统 哲学 程序设计语言
作者
Xiaojun Chen,Ke Jia,Yaning Zhang,Jianping Gou,Anna Shen,Shaohua Wan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/jbhi.2024.3438254
摘要

With the development of medical technology, ultrasonography has become an important diagnostic method in doctors' clinical work. However, compared with the static medical image processing work such as CT, MRI, etc., which has more research bases, ultrasonography is a dynamic medical image similar to video, which is captured and generated by a real-time moving probe, so how to deal with the video data in the medical field and cross modal extraction of the textual semantics in the medical video is a difficult problem that needs to be researched. For this reason, this paper proposes a pre-training model of multimodal distillation and fusion coding for processing the semantic relationship between ultrasound dynamic Images and text. Firstly, by designing the fusion encoder, the visual geometric features of tissues and organs in ultrasound dynamic images, the overall visual appearance descriptive features and the named entity linguistic features are fused to form a unified visual-linguistic feature, so that the model obtains richer visual, linguistic cues aggregation and alignment ability. Then, the pre-training model is augmented by multimodal knowledge distillation to improve the learning ability of the model. The final experimental results on multiple datasets show that the multimodal distillation pre-training model generally improves the fusion ability of various types of features in ultrasound dynamic images, and realizes the automated and accurate annotation of ultrasound dynamic images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gy发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
2秒前
Roche发布了新的文献求助10
2秒前
linggle发布了新的文献求助10
3秒前
3秒前
4秒前
子暮发布了新的文献求助20
4秒前
4秒前
5秒前
5秒前
zyy发布了新的文献求助10
5秒前
欣喜书桃发布了新的文献求助10
5秒前
九次方完成签到,获得积分10
6秒前
深情安青应助微笑的li采纳,获得10
6秒前
persist发布了新的文献求助10
7秒前
hmf1995完成签到 ,获得积分10
8秒前
归雁完成签到,获得积分10
9秒前
高大以南完成签到,获得积分10
9秒前
在水一方应助李璃采纳,获得10
9秒前
10秒前
尊敬惜儿发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
lth发布了新的文献求助10
13秒前
李爱国应助liuf采纳,获得10
13秒前
koritto完成签到,获得积分10
13秒前
无语的安白应助zyy采纳,获得10
14秒前
科研通AI2S应助zyy采纳,获得10
14秒前
深情安青应助Li采纳,获得10
14秒前
HP发布了新的文献求助10
14秒前
persist完成签到,获得积分10
15秒前
机智寻雪发布了新的文献求助30
15秒前
1rtf完成签到,获得积分10
15秒前
FashionBoy应助Cheyann采纳,获得20
16秒前
bkagyin应助沉静的八宝粥采纳,获得10
16秒前
17秒前
moon发布了新的文献求助10
17秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861610
求助须知:如何正确求助?哪些是违规求助? 3404048
关于积分的说明 10637934
捐赠科研通 3127167
什么是DOI,文献DOI怎么找? 1724586
邀请新用户注册赠送积分活动 830539
科研通“疑难数据库(出版商)”最低求助积分说明 779251