Machine Learning Predicts Peripherally Inserted Central Catheters-Related Deep Vein Thrombosis Using Patient Features and Catheterization Technology Features

人工智能 随机森林 特征(语言学) 支持向量机 超参数 人工神经网络 深静脉 医学 模式识别(心理学) 分类器(UML) 计算机科学 机器学习 血栓形成 外科 语言学 哲学
作者
Yuan Sheng,Wei Gao
出处
期刊:Clinical Nursing Research [SAGE Publishing]
卷期号:33 (6): 460-469
标识
DOI:10.1177/10547738241260947
摘要

This study aims to use patient feature and catheterization technology feature variables to train the corresponding machine learning (ML) models to predict peripherally inserted central catheters-deep vein thrombosis (PICCs-DVT) and analyze the importance of the two types of features to PICCs-DVT from the aspect of “input-output” correlation. To comprehensively and systematically summarize the variables used to describe patient features and catheterization technical features, this study combined 18 literature involving the two types of features in predicting PICCs-DVT. A total of 21 variables used to describe the two types of features were summarized, and feature values were extracted from the data of 1,065 PICCs patients from January 1, 2021 to August 31, 2022, to construct a data sample set. Then, 70% of the sample set is used for model training and hyperparameter optimization, and 30% of the sample set is used for PICCs-DVT prediction and feature importance analysis of three common ML classification models (i.e. support vector classifier [SVC], random forest [RF], and artificial neural network [ANN]). In terms of prediction performance, this study selected four metrics to evaluate the prediction performance of the model: precision ( P), recall ( R), accuracy ( ACC), and area under the curve ( AUC). In terms of feature importance analysis, this study chooses a single feature analysis method based on the “input-output” sensitivity principle—Permutation Importance. For the mean model performance, the three ML models on the test set are P = 0.92, R = 0.95, ACC = 0.88, and AUC = 0.81. Specifically, the RF model is P = 0.95, R = 0.96, ACC = 0.92, AUC = 0.86; the ANN model is P = 0.92, R = 0.95, ACC = 0.88, AUC = 0.81; the SVC model is P = 0.88, R = 0.94, ACC = 0.85, AUC = 0.77. For feature importance analysis, Catheter-to-vein rate (RF: 91.55%, ANN: 82.25%, SVC: 87.71%), Zubrod-ECOG-WHO score (RF: 66.35%, ANN: 82.25%, SVC: 44.35%), and insertion attempt (RF: 44.35%, ANN: 37.65%, SVC: 65.80%) all occupy the top three in the ML models prediction task of PICCs-DVT, showing relatively consistent ranking results. The ML models show good performance in predicting PICCs-DVT and reveal a relatively consistent ranking of feature importance from the data. The important features revealed might help clinical medical staff to better understand and analyze the formation mechanism of PICCs-DVT from a data-driven perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李浩宇关注了科研通微信公众号
1秒前
xuelian完成签到,获得积分10
2秒前
小马儿发布了新的文献求助10
3秒前
tansl1989发布了新的文献求助10
4秒前
Longfei完成签到,获得积分20
5秒前
6秒前
6秒前
8秒前
Er1c发布了新的文献求助10
10秒前
没时间解释了完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
南宫清涟发布了新的文献求助30
13秒前
13秒前
Gzh_NJ发布了新的文献求助10
15秒前
英俊的铭应助Er1c采纳,获得10
15秒前
腊月完成签到,获得积分10
15秒前
小二郎应助高山仰止采纳,获得10
15秒前
一颗药顽完成签到,获得积分10
16秒前
嘻嘻发布了新的文献求助10
16秒前
fat完成签到,获得积分10
16秒前
生动路人发布了新的文献求助10
16秒前
李浩宇发布了新的文献求助10
17秒前
17秒前
活泼的幼蓉完成签到,获得积分20
18秒前
18秒前
周周发布了新的文献求助10
18秒前
19秒前
xinshu完成签到,获得积分10
19秒前
脑洞疼应助王巧儿采纳,获得10
20秒前
结实小蜜蜂完成签到,获得积分10
21秒前
李健的粉丝团团长应助Zero采纳,获得10
21秒前
玛琪玛小姐的狗完成签到,获得积分10
22秒前
22秒前
xulin发布了新的文献求助10
23秒前
YHY完成签到,获得积分10
23秒前
24秒前
大模型应助xhjh03采纳,获得10
24秒前
Hello应助天外来物采纳,获得10
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4089364
求助须知:如何正确求助?哪些是违规求助? 3627978
关于积分的说明 11503328
捐赠科研通 3340561
什么是DOI,文献DOI怎么找? 1836396
邀请新用户注册赠送积分活动 904380
科研通“疑难数据库(出版商)”最低求助积分说明 822249