亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Predicts Peripherally Inserted Central Catheters-Related Deep Vein Thrombosis Using Patient Features and Catheterization Technology Features

人工智能 随机森林 特征(语言学) 支持向量机 超参数 人工神经网络 深静脉 医学 模式识别(心理学) 分类器(UML) 计算机科学 机器学习 血栓形成 外科 哲学 语言学
作者
Yuan Sheng,Wei Gao
出处
期刊:Clinical Nursing Research [SAGE Publishing]
卷期号:33 (6): 460-469
标识
DOI:10.1177/10547738241260947
摘要

This study aims to use patient feature and catheterization technology feature variables to train the corresponding machine learning (ML) models to predict peripherally inserted central catheters-deep vein thrombosis (PICCs-DVT) and analyze the importance of the two types of features to PICCs-DVT from the aspect of “input-output” correlation. To comprehensively and systematically summarize the variables used to describe patient features and catheterization technical features, this study combined 18 literature involving the two types of features in predicting PICCs-DVT. A total of 21 variables used to describe the two types of features were summarized, and feature values were extracted from the data of 1,065 PICCs patients from January 1, 2021 to August 31, 2022, to construct a data sample set. Then, 70% of the sample set is used for model training and hyperparameter optimization, and 30% of the sample set is used for PICCs-DVT prediction and feature importance analysis of three common ML classification models (i.e. support vector classifier [SVC], random forest [RF], and artificial neural network [ANN]). In terms of prediction performance, this study selected four metrics to evaluate the prediction performance of the model: precision ( P), recall ( R), accuracy ( ACC), and area under the curve ( AUC). In terms of feature importance analysis, this study chooses a single feature analysis method based on the “input-output” sensitivity principle—Permutation Importance. For the mean model performance, the three ML models on the test set are P = 0.92, R = 0.95, ACC = 0.88, and AUC = 0.81. Specifically, the RF model is P = 0.95, R = 0.96, ACC = 0.92, AUC = 0.86; the ANN model is P = 0.92, R = 0.95, ACC = 0.88, AUC = 0.81; the SVC model is P = 0.88, R = 0.94, ACC = 0.85, AUC = 0.77. For feature importance analysis, Catheter-to-vein rate (RF: 91.55%, ANN: 82.25%, SVC: 87.71%), Zubrod-ECOG-WHO score (RF: 66.35%, ANN: 82.25%, SVC: 44.35%), and insertion attempt (RF: 44.35%, ANN: 37.65%, SVC: 65.80%) all occupy the top three in the ML models prediction task of PICCs-DVT, showing relatively consistent ranking results. The ML models show good performance in predicting PICCs-DVT and reveal a relatively consistent ranking of feature importance from the data. The important features revealed might help clinical medical staff to better understand and analyze the formation mechanism of PICCs-DVT from a data-driven perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
多边棱发布了新的文献求助10
24秒前
南极的企鹅365完成签到 ,获得积分10
26秒前
33秒前
量子星尘发布了新的文献求助10
40秒前
1分钟前
2分钟前
自由的无色完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Jasper应助多边棱采纳,获得10
3分钟前
002完成签到,获得积分10
3分钟前
001完成签到,获得积分10
3分钟前
003完成签到,获得积分10
3分钟前
4分钟前
多边棱发布了新的文献求助10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
SciGPT应助多边棱采纳,获得10
5分钟前
zxq完成签到 ,获得积分10
5分钟前
晴莹完成签到 ,获得积分10
6分钟前
6分钟前
多边棱发布了新的文献求助10
6分钟前
FashionBoy应助阿甲采纳,获得10
7分钟前
7分钟前
阿甲完成签到,获得积分10
7分钟前
阿甲发布了新的文献求助10
7分钟前
量子星尘发布了新的文献求助100
8分钟前
Ava应助多边棱采纳,获得10
8分钟前
田様应助Polaris采纳,获得10
8分钟前
nuliguan完成签到 ,获得积分0
9分钟前
颜陌完成签到,获得积分10
9分钟前
10分钟前
多边棱发布了新的文献求助10
10分钟前
复杂的傲柔完成签到 ,获得积分10
10分钟前
酷酷的八宝粥完成签到 ,获得积分10
10分钟前
10分钟前
量子星尘发布了新的文献求助10
10分钟前
cc完成签到,获得积分10
11分钟前
科研duangduang完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4653656
求助须知:如何正确求助?哪些是违规求助? 4040059
关于积分的说明 12494724
捐赠科研通 3730940
什么是DOI,文献DOI怎么找? 2059380
邀请新用户注册赠送积分活动 1090099
科研通“疑难数据库(出版商)”最低求助积分说明 971204