亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Predicts Peripherally Inserted Central Catheters-Related Deep Vein Thrombosis Using Patient Features and Catheterization Technology Features

人工智能 随机森林 特征(语言学) 支持向量机 超参数 人工神经网络 深静脉 医学 模式识别(心理学) 分类器(UML) 计算机科学 机器学习 血栓形成 外科 哲学 语言学
作者
Yuan Sheng,Wei Gao
出处
期刊:Clinical Nursing Research [SAGE Publishing]
卷期号:33 (6): 460-469
标识
DOI:10.1177/10547738241260947
摘要

This study aims to use patient feature and catheterization technology feature variables to train the corresponding machine learning (ML) models to predict peripherally inserted central catheters-deep vein thrombosis (PICCs-DVT) and analyze the importance of the two types of features to PICCs-DVT from the aspect of “input-output” correlation. To comprehensively and systematically summarize the variables used to describe patient features and catheterization technical features, this study combined 18 literature involving the two types of features in predicting PICCs-DVT. A total of 21 variables used to describe the two types of features were summarized, and feature values were extracted from the data of 1,065 PICCs patients from January 1, 2021 to August 31, 2022, to construct a data sample set. Then, 70% of the sample set is used for model training and hyperparameter optimization, and 30% of the sample set is used for PICCs-DVT prediction and feature importance analysis of three common ML classification models (i.e. support vector classifier [SVC], random forest [RF], and artificial neural network [ANN]). In terms of prediction performance, this study selected four metrics to evaluate the prediction performance of the model: precision ( P), recall ( R), accuracy ( ACC), and area under the curve ( AUC). In terms of feature importance analysis, this study chooses a single feature analysis method based on the “input-output” sensitivity principle—Permutation Importance. For the mean model performance, the three ML models on the test set are P = 0.92, R = 0.95, ACC = 0.88, and AUC = 0.81. Specifically, the RF model is P = 0.95, R = 0.96, ACC = 0.92, AUC = 0.86; the ANN model is P = 0.92, R = 0.95, ACC = 0.88, AUC = 0.81; the SVC model is P = 0.88, R = 0.94, ACC = 0.85, AUC = 0.77. For feature importance analysis, Catheter-to-vein rate (RF: 91.55%, ANN: 82.25%, SVC: 87.71%), Zubrod-ECOG-WHO score (RF: 66.35%, ANN: 82.25%, SVC: 44.35%), and insertion attempt (RF: 44.35%, ANN: 37.65%, SVC: 65.80%) all occupy the top three in the ML models prediction task of PICCs-DVT, showing relatively consistent ranking results. The ML models show good performance in predicting PICCs-DVT and reveal a relatively consistent ranking of feature importance from the data. The important features revealed might help clinical medical staff to better understand and analyze the formation mechanism of PICCs-DVT from a data-driven perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yux完成签到,获得积分10
1秒前
27秒前
sandwich完成签到 ,获得积分10
34秒前
34秒前
无花果应助化爷采纳,获得10
35秒前
jyy发布了新的文献求助10
42秒前
bji完成签到,获得积分10
48秒前
1分钟前
1分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
zxcvvbb1001完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
小蘑菇应助wang采纳,获得10
4分钟前
从容芮应助Marciu33采纳,获得30
4分钟前
4分钟前
袁钰琳完成签到 ,获得积分10
4分钟前
共享精神应助唯伊采纳,获得10
4分钟前
5分钟前
唯伊发布了新的文献求助10
5分钟前
喜悦的香之完成签到 ,获得积分10
5分钟前
5分钟前
wang发布了新的文献求助10
5分钟前
5分钟前
5分钟前
科研通AI5应助wang采纳,获得10
5分钟前
5分钟前
心想事成完成签到 ,获得积分10
5分钟前
chfvHJSNK发布了新的文献求助10
5分钟前
6分钟前
无聊的寒香完成签到,获得积分10
6分钟前
6分钟前
6分钟前
思源应助追寻的摩托采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5174117
求助须知:如何正确求助?哪些是违规求助? 4363720
关于积分的说明 13585812
捐赠科研通 4212364
什么是DOI,文献DOI怎么找? 2310447
邀请新用户注册赠送积分活动 1309494
关于科研通互助平台的介绍 1257013