Harnessing Artificial Intelligence to Predict Ovarian Stimulation Outcomes in In Vitro Fertilization: Scoping Review

体外受精 背景(考古学) 卵巢过度刺激综合征 计算机科学 人工智能 医学 机器学习 怀孕 妇科 生物信息学 生物 古生物学 遗传学
作者
Rawan AlSaad,Alaa Abd‐Alrazaq,Fadi Choucair,Arfan Ahmed,Sarah Aziz,Javaid I. Sheikh
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e53396-e53396 被引量:3
标识
DOI:10.2196/53396
摘要

Background In the realm of in vitro fertilization (IVF), artificial intelligence (AI) models serve as invaluable tools for clinicians, offering predictive insights into ovarian stimulation outcomes. Predicting and understanding a patient’s response to ovarian stimulation can help in personalizing doses of drugs, preventing adverse outcomes (eg, hyperstimulation), and improving the likelihood of successful fertilization and pregnancy. Given the pivotal role of accurate predictions in IVF procedures, it becomes important to investigate the landscape of AI models that are being used to predict the outcomes of ovarian stimulation. Objective The objective of this review is to comprehensively examine the literature to explore the characteristics of AI models used for predicting ovarian stimulation outcomes in the context of IVF. Methods A total of 6 electronic databases were searched for peer-reviewed literature published before August 2023, using the concepts of IVF and AI, along with their related terms. Records were independently screened by 2 reviewers against the eligibility criteria. The extracted data were then consolidated and presented through narrative synthesis. Results Upon reviewing 1348 articles, 30 met the predetermined inclusion criteria. The literature primarily focused on the number of oocytes retrieved as the main predicted outcome. Microscopy images stood out as the primary ground truth reference. The reviewed studies also highlighted that the most frequently adopted stimulation protocol was the gonadotropin-releasing hormone (GnRH) antagonist. In terms of using trigger medication, human chorionic gonadotropin (hCG) was the most commonly selected option. Among the machine learning techniques, the favored choice was the support vector machine. As for the validation of AI algorithms, the hold-out cross-validation method was the most prevalent. The area under the curve was highlighted as the primary evaluation metric. The literature exhibited a wide variation in the number of features used for AI algorithm development, ranging from 2 to 28,054 features. Data were mostly sourced from patient demographics, followed by laboratory data, specifically hormonal levels. Notably, the vast majority of studies were restricted to a single infertility clinic and exclusively relied on nonpublic data sets. Conclusions These insights highlight an urgent need to diversify data sources and explore varied AI techniques for improved prediction accuracy and generalizability of AI models for the prediction of ovarian stimulation outcomes. Future research should prioritize multiclinic collaborations and consider leveraging public data sets, aiming for more precise AI-driven predictions that ultimately boost patient care and IVF success rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天也要好好学习完成签到,获得积分10
刚刚
乔乔完成签到,获得积分10
3秒前
6秒前
玲ling完成签到 ,获得积分10
7秒前
YL完成签到 ,获得积分10
8秒前
傅宛白完成签到,获得积分10
12秒前
lily336699发布了新的文献求助10
13秒前
岳莹晓完成签到 ,获得积分10
15秒前
lixiniverson完成签到 ,获得积分10
16秒前
dryao完成签到,获得积分10
18秒前
简单小土豆完成签到 ,获得积分10
18秒前
隐形皮卡丘完成签到,获得积分20
19秒前
noflatterer完成签到,获得积分10
21秒前
lixoii完成签到 ,获得积分10
24秒前
高兴的半仙完成签到,获得积分10
25秒前
虾米完成签到,获得积分10
25秒前
Dong完成签到 ,获得积分10
25秒前
甘牡娟完成签到,获得积分10
29秒前
30秒前
31秒前
无花果应助ada采纳,获得10
31秒前
小棉背心完成签到 ,获得积分10
32秒前
wali完成签到 ,获得积分0
34秒前
35秒前
落叶为谁殇完成签到,获得积分10
36秒前
prim发布了新的文献求助10
36秒前
36秒前
37秒前
大眼的平松完成签到,获得积分10
37秒前
fangyifang发布了新的文献求助10
38秒前
腾桑发布了新的文献求助10
39秒前
41秒前
mc完成签到 ,获得积分10
43秒前
ada发布了新的文献求助10
46秒前
琪琪完成签到,获得积分10
46秒前
李爱国应助科研通管家采纳,获得10
49秒前
搜集达人应助科研通管家采纳,获得10
49秒前
丘比特应助科研通管家采纳,获得10
49秒前
深情安青应助科研通管家采纳,获得10
49秒前
Owen应助科研通管家采纳,获得10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776097
求助须知:如何正确求助?哪些是违规求助? 3321698
关于积分的说明 10206667
捐赠科研通 3036787
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841