RTLSeg: A novel multi-component inspection network for railway track line based on instance segmentation

计算机科学 磁道(磁盘驱动器) 分割 组分(热力学) 特征(语言学) 直线(几何图形) 人工智能 跳跃式监视 最小边界框 棱锥(几何) 路径(计算) 人工神经网络 计算机视觉 数据挖掘 图像(数学) 物理 哲学 光学 操作系统 热力学 语言学 程序设计语言 数学 几何学
作者
Dehua Wei,Xiukun Wei,Qingfeng Tang,Limin Jia,Xinqiang Yin,Ji Yang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:119: 105822-105822 被引量:20
标识
DOI:10.1016/j.engappai.2023.105822
摘要

The condition monitoring of railway track line is one of the fundamental tasks to ensure the safety of the railway transportation system. Railway track line is mainly made up of tracks, fasteners, bolts, backing plates, and so on. Given the requirements for rapid and accurate inspection, an innovative and intelligent method for multi-component identification and common defect detection of railway track line is investigated based on instance segmentation. More specifically, a railway track line image (RTL-I) dataset is constructed and annotated manually in this paper. After that, based on the work of YOLACT and YOLACT++, combined with prior knowledge, a railway track line image segmentation model (RTLSeg for short) is proposed. Firstly, taking the characteristics of the objects in the RTL-I dataset, preset anchors are redesigned and a feature enhanced module is introduced in the prediction head to improve the detection and segmentation accuracy of the model. Secondly, to strengthen the internal information propagation within the model, PaFPN (path aggregation feature pyramid network) is applied instead of FPN in RTLSeg. Thirdly, with the help of CoordConv, Coord-Protonet is presented to add position awareness explicitly to the model for more robust and higher quality prototype masks. Finally, to further improve the model performance, the attention mechanism is explored and a novel spatial attention-guided bounding box branch is employed in the enhanced prediction head. Both quantitative and qualitative experimental results show that the proposed method is feasible in detecting and segmenting multi-component and common defects of railway track line, and outperforms the compared baseline models. In particular, RTLSeg is able to achieve 91.35 bbox mAP and 91.60 mask mAP with the customized dataset. Meanwhile, the average inference speed reaches 13.07 fps. The average detection accuracy and recall are 100% and 99.83%, respectively. Furthermore, the effectiveness of each optimized part of the proposed RTLSeg model is demonstrated by additional ablation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助王子采纳,获得10
1秒前
cz完成签到,获得积分10
2秒前
3秒前
蛋堡发布了新的文献求助10
4秒前
4秒前
孙x发布了新的文献求助10
4秒前
天天完成签到 ,获得积分10
7秒前
yangsouth完成签到 ,获得积分10
7秒前
7秒前
8秒前
Jamie发布了新的文献求助10
8秒前
11秒前
年轻元冬完成签到,获得积分10
13秒前
JamesPei应助蛋堡采纳,获得10
13秒前
天天快乐应助跳跃虔采纳,获得10
13秒前
An发布了新的文献求助10
13秒前
万能图书馆应助Mira采纳,获得10
14秒前
14秒前
麦小叮当完成签到,获得积分10
15秒前
15秒前
Star应助xnzll采纳,获得10
16秒前
华仔应助Jamie采纳,获得10
17秒前
村长发布了新的文献求助10
18秒前
李荣航发布了新的文献求助20
19秒前
HL发布了新的文献求助10
19秒前
22秒前
ZhouYW应助ponytail采纳,获得10
23秒前
耍酷的小刺猬完成签到 ,获得积分10
24秒前
bkagyin应助你再说一遍采纳,获得10
25秒前
JamesPei应助大方弘文采纳,获得10
26秒前
跳跃虔发布了新的文献求助10
27秒前
怕黑明雪完成签到 ,获得积分10
27秒前
无花果应助赫连紫采纳,获得10
28秒前
29秒前
ZZ关闭了ZZ文献求助
29秒前
温暖囧给温暖囧的求助进行了留言
29秒前
32秒前
慕青应助断章采纳,获得10
33秒前
yolanda完成签到,获得积分20
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
求该文附件!是附件!Prevalence and Data Availability of Early Childhood Caries in 193 United Nations Countries, 2007–2017 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806853
求助须知:如何正确求助?哪些是违规求助? 3351618
关于积分的说明 10354910
捐赠科研通 3067447
什么是DOI,文献DOI怎么找? 1684519
邀请新用户注册赠送积分活动 809788
科研通“疑难数据库(出版商)”最低求助积分说明 765635