可靠性(半导体)
统计
缺少数据
置信区间
标准误差
期望最大化算法
样本量测定
数据集
样品(材料)
协方差矩阵
数学
最大似然
最大化
计量经济学
计算机科学
数学优化
功率(物理)
物理
化学
色谱法
量子力学
标识
DOI:10.1177/0013164403261050
摘要
A method for incorporating maximum likelihood (ML) estimation into reliability analyses with item-level missing data is outlined. An ML estimate of the covariance matrix is first obtained using the expectation maximization (EM) algorithm, and coefficient alpha is subsequently computed using standard formulae. A simulation study demonstrated that the EMapproach yields (a) less bias in reliability estimates, (b) dramatically reduces cross-sample fluctuation of estimates, and (c) yields more accurate confidence intervals. Implications for reliability reporting practices are discussed, and the EM procedure is demonstrated using a heuristic data set.
科研通智能强力驱动
Strongly Powered by AbleSci AI