Dynamic Behavior and Deformation Characteristics of Oil Droplets in Spiral Flow Field

分手 机械 雷诺数 螺旋(铁路) 流量(数学) 变形(气象学) 油滴 材料科学 韦伯数 分手 体积流量 领域(数学) 离心力 计算机模拟 光学 两相流 化学 流动聚焦 经典力学
作者
Shuai Guan,Lei Xing,Minghu Jiang,Lixin Zhao,Kailei Zhou,Hanli Dong,Y. Chen
出处
期刊:Langmuir [American Chemical Society]
标识
DOI:10.1021/acs.langmuir.5c05000
摘要

The spiral flow field is the key to ensuring the performance of centrifugal and cyclonic separation equipment. The migration and deformation dynamics of oil droplets in a spiral flow field are a crucial topic to guide the design of separation equipment and parameter optimization. However, the droplet dynamics especially in a two-phase nonlaminar flow field is challenging and meaningful due to its complex interfaces and deformation behaviors. The deformation, migration, and breakup dynamic behaviors of discrete-phase oil droplets in the spiral flow field were innovatively investigated via numerical simulation and high-speed photography methods. Two distinct breakup modes─tensile breakup and impact breakup─were clearly identified by analyzing the morphological evolution of droplets in the spiral flow field. Simultaneously, through flow field analysis and the construction of oil droplet mechanical models, a predictive model was established and validated to describe the relationship among the inlet Reynolds number, pitch, and critical droplet breakup diameter. Results show that in the five-stage spiral tube, the peak tangential velocity migrates from the tube center to the outer wall between the first and second stages (where the initial droplet breakup occurs) and then stabilizes in the subsequent stages. Furthermore, the effect of the Reynolds number on droplet breakup shows that as the Reynolds number increases droplets are prone to undergo impact breakup. When Re ranges from 1000 to 60,000, the critical value for impact breakup increases from 2.4 to 5.5 mm. Further investigation into the effect of pitch on droplet breakup showed that increasing the pitch promotes breakup until the critical value of 60 mm, beyond which further increases inhibit breakup. This research provides new insights into the interface behavior of discrete phases in complex spiral flow fields and offers a practical reference for enhancing the performance of related separation equipment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anatocism应助优美的幻桃采纳,获得10
刚刚
WHW完成签到,获得积分10
刚刚
刚刚
drizzling完成签到,获得积分10
刚刚
失眠螃蟹发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
王水苗完成签到,获得积分20
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
无情谷兰发布了新的文献求助10
1秒前
嘿嘿应助科研通管家采纳,获得20
1秒前
1秒前
王海吟发布了新的文献求助10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
国家栋梁完成签到,获得积分10
1秒前
1秒前
玄风应助科研通管家采纳,获得10
1秒前
其7完成签到,获得积分10
2秒前
小蘑菇应助兔子采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
小二郎应助周游采纳,获得10
2秒前
2秒前
2秒前
Bearbiscuit完成签到,获得积分10
2秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
Fuffu发布了新的文献求助10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603