Dual Self‐Promoted Ring‐Opening Polymerization towards Cationic Polypeptoids with Stable Helices

作者
Kunyu Gan,Ronald N. Zuckermann,Ning Zhao,Sunting Xuan,Zhengbiao Zhang
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/anie.202521129
摘要

Abstract Cationic helices play crucial roles in various biological processes. While polypeptides containing lysine and guanidine side chains are among the most prevalent cationic polymers, their helical structures are often unstable due to side‐chain electrostatic repulsion. Here, bulky, chiral tertiary amine side chains were incorporated into polypeptoids by controlled ring‐opening polymerization, inducing achiral backbones into stable helices. Despite the highly steric side chains, the cyclic monomer underwent efficient polymerization via a dual self‐promoted mechanism involving side chain‐mediated proton transfer and helix‐induced acceleration. Subsequent quaternization yielded structurally diverse polyproline‐I‐like helical cationic polypeptoids. Unlike conventional polypeptides where cationic side chains typically disrupt helicity, these cationic polypeptoids exhibited remarkably stable helices. The cationic side chains stabilize the helices by enforcing cis ‐amide backbone conformations through two key interactions: 1) C─H···O hydrogen bonding between side chains and backbone; 2) steric hindrance of side chains. Preliminary studies demonstrated that cationic helical polypeptoids exhibited significantly lower cytotoxicity and faster cellular uptake kinetics compared to the conventional cationic polypeptide poly( l ‐lysine ). The dual self‐promoted synthesis, coupled with cationic side chain‐mediated helix stabilization, provides new insights for designing advanced functional polymers. Moreover, these cationic polypeptoids, with robust helices, low cytotoxicity and high cellular uptake, hold great promise for various biological applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助甄东采纳,获得10
刚刚
刚刚
djbj2022发布了新的文献求助10
1秒前
刘吉瀚发布了新的文献求助10
1秒前
2秒前
野性的枕头完成签到,获得积分10
2秒前
永远55度完成签到,获得积分10
4秒前
4秒前
cccccc发布了新的文献求助30
4秒前
星辰大海应助孤独的又莲采纳,获得10
4秒前
善良的沛山完成签到,获得积分10
5秒前
5秒前
吱吱组织杂质完成签到,获得积分10
6秒前
坚强的冰香完成签到,获得积分10
7秒前
Jasper应助陶醉的蜜蜂采纳,获得10
8秒前
8秒前
10秒前
11秒前
wisher发布了新的文献求助10
12秒前
重要觅风发布了新的文献求助10
12秒前
12秒前
HB完成签到,获得积分10
14秒前
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
14秒前
哈基米德应助科研通管家采纳,获得40
14秒前
浮游应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
bji完成签到,获得积分10
15秒前
Rita应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
刘大米发布了新的文献求助10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
15秒前
Summer完成签到,获得积分10
15秒前
16秒前
义气的帅哥完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194604
求助须知:如何正确求助?哪些是违规求助? 4376857
关于积分的说明 13630554
捐赠科研通 4232015
什么是DOI,文献DOI怎么找? 2321314
邀请新用户注册赠送积分活动 1319495
关于科研通互助平台的介绍 1269832