HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization

集合(抽象数据类型) 数学优化 多目标优化 进化算法 帕累托原理 计算机科学 蒙特卡罗方法 算法 相关性(法律) 数学 单调函数 度量(数据仓库) 数据挖掘 统计 数学分析 程序设计语言 法学 政治学
作者
Johannes Bader,Eckart Zitzler
出处
期刊:Evolutionary Computation [The MIT Press]
卷期号:19 (1): 45-76 被引量:1613
标识
DOI:10.1162/evco_a_00009
摘要

In the field of evolutionary multi-criterion optimization, the hypervolume indicator is the only single set quality measure that is known to be strictly monotonic with regard to Pareto dominance: whenever a Pareto set approximation entirely dominates another one, then the indicator value of the dominant set will also be better. This property is of high interest and relevance for problems involving a large number of objective functions. However, the high computational effort required for hypervolume calculation has so far prevented the full exploitation of this indicator's potential; current hypervolume-based search algorithms are limited to problems with only a few objectives. This paper addresses this issue and proposes a fast search algorithm that uses Monte Carlo simulation to approximate the exact hypervolume values. The main idea is not that the actual indicator values are important, but rather that the rankings of solutions induced by the hypervolume indicator. In detail, we present HypE, a hypervolume estimation algorithm for multi-objective optimization, by which the accuracy of the estimates and the available computing resources can be traded off; thereby, not only do many-objective problems become feasible with hypervolume-based search, but also the runtime can be flexibly adapted. Moreover, we show how the same principle can be used to statistically compare the outcomes of different multi-objective optimizers with respect to the hypervolume—so far, statistical testing has been restricted to scenarios with few objectives. The experimental results indicate that HypE is highly effective for many-objective problems in comparison to existing multi-objective evolutionary algorithms. HypE is available for download at http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小石榴爸爸完成签到 ,获得积分10
2秒前
5秒前
10秒前
12秒前
Qiancheni发布了新的文献求助10
17秒前
奋斗语柳发布了新的文献求助10
18秒前
科研通AI5应助简单平蓝采纳,获得10
18秒前
英姑应助协和_子鱼采纳,获得10
20秒前
辞忧完成签到,获得积分10
21秒前
彭于晏应助LUMO采纳,获得10
23秒前
23秒前
生动的煎蛋完成签到 ,获得积分10
24秒前
子云完成签到,获得积分10
26秒前
科研通AI2S应助nini采纳,获得10
27秒前
奋斗语柳完成签到,获得积分20
30秒前
31秒前
南相发布了新的文献求助10
31秒前
33秒前
丰富的宛亦完成签到 ,获得积分10
33秒前
Jasper应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
34秒前
研友_VZG7GZ应助科研通管家采纳,获得10
34秒前
Lucas应助科研通管家采纳,获得10
34秒前
Hello应助科研通管家采纳,获得10
34秒前
Lucas应助科研通管家采纳,获得10
34秒前
共享精神应助科研通管家采纳,获得10
34秒前
顾矜应助科研通管家采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
慕青应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
土土完成签到,获得积分10
35秒前
千空发布了新的文献求助10
36秒前
36秒前
37秒前
大个应助愉快的花卷采纳,获得10
39秒前
柔之发布了新的文献求助10
39秒前
40秒前
41秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3324059
关于积分的说明 10216978
捐赠科研通 3039300
什么是DOI,文献DOI怎么找? 1667944
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385