乙二胺四乙酸
吸附
化学
螯合作用
核化学
硅胶
水溶液中的金属离子
朗缪尔吸附模型
螯合树脂
无机化学
金属
色谱法
有机化学
作者
Eveliina Repo,Tonni Agustiono Kurniawan,J. Warchoł,Mika Sillanpää
标识
DOI:10.1016/j.jhazmat.2009.06.111
摘要
In this study, the removal of Co(II) and Ni(II) ions from contaminated water was investigated using silica gel materials functionalized with both ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA). The modified adsorbents were characterized using elemental analysis, surface area and pore size analysis, and zeta potential analysis. The adsorption and regeneration studies were conducted in batch mode. The optimum conditions for the removal of both metals at an initial concentration of 10 mg/L were 2 g/L of dose, pH 3, 50 rpm of agitation speed and 4 h of contact time. The removal of Co(II) and Ni(II) by EDTA- and/or DTPA-modified silica gels was substantially higher than that by their unmodified form. The maximum Co(II) and Ni(II) uptakes by the EDTA-modified silica gel were 20.0 and 21.6 mg/g, comparable to their adsorption capacities by DTPA-modified silica gel (Co(II): 16.1 mg/g; Ni(II): 16.7 mg/g). At the same concentration of 10 mg/L, the removal of both metals by the modified adsorbents ranged from 96% to 99%. The two-site Langmuir model was representative to simulate adsorption isotherms. The kinetics of Co(II) and Ni(II) adsorption by modified silica gels followed pseudo-second-order.
科研通智能强力驱动
Strongly Powered by AbleSci AI