Using low‐spectral‐resolution images to acquire simulated hyperspectral images

高光谱成像 全光谱成像 计算机科学 人工智能 像素 遥感 计算机视觉 光谱分辨率 图像分辨率 模式识别(心理学) 地理 谱线 物理 天文
作者
Fang Chen,Zheng Niu,Genyun Sun,ChangYao Wang,Jack Teng
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:29 (10): 2963-2980 被引量:22
标识
DOI:10.1080/01431160701408410
摘要

We propose a method to acquire simulated hyperspectral images using low‐spectral‐resolution images. Hyperspectral images provide more spectral information than low‐spectral‐resolution images, because of the additional spectral bands used for data acquisition in hyperspectral imaging. Unfortunately, original hyperspectral images are more expensive and more difficult to acquire. However, some research questions require an abundance of spectral information for ground monitoring, which original hyperspectral images can easily provide. Hence, we need to propose a method to acquire simulated hyperspectral images, when original hyperspectral images are especially necessary. Since low‐spectral‐resolution images are readily available and cheaper, we develop a method to acquire simulated hyperspectral images using low‐spectral‐resolution images. With simulated hyperspectral images, we can acquire more 'hidden' information from low‐spectral‐resolution images. Our method uses the principles of pixel‐mixing to understand the compositional relationship of spectrum data to an image pixel, and to simulate radiation transmission processes. To this end, we use previously obtained data (i.e. spectrum library) and the sorting data of objects that are derived from a low‐spectral‐resolution image. Using the simulation of radiation transmission processes and these different data, we acquire simulated hyperspectral images. In addition, previous analyses of simulated remotely sensed images do not use quantitative statistical measures, but use qualitative methods, describing simulated images by sight. Here, we quantitatively assess our simulation by comparing the correlation coefficients of simulated images and real images. Finally, we use simulated hyperspectral images, real Hyperion images, and their corresponding ALI images to generate several classification images. The classification results demonstrate that simulated hyperspectral data contain additional information not available in the multispectral data. We find that our method can acquire simulated hyperspectral images quickly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎的南蕾完成签到,获得积分10
刚刚
gmc完成签到 ,获得积分10
刚刚
尼古拉斯王完成签到,获得积分10
刚刚
不安的松完成签到 ,获得积分10
1秒前
1秒前
怎么会这样呢完成签到,获得积分20
1秒前
弄青莲完成签到 ,获得积分10
1秒前
章鱼小丸子完成签到,获得积分10
2秒前
2秒前
Darcy完成签到,获得积分10
2秒前
无名完成签到,获得积分10
2秒前
liuhang发布了新的文献求助10
3秒前
3秒前
hebrews完成签到,获得积分10
3秒前
小巧的以南完成签到,获得积分20
3秒前
jiejie321完成签到,获得积分10
3秒前
庆次发布了新的文献求助10
3秒前
聪明戒指完成签到,获得积分20
4秒前
4秒前
赘婿应助liang2508采纳,获得10
4秒前
闫123完成签到,获得积分10
4秒前
碧蓝白玉完成签到,获得积分10
5秒前
朵拉A梦完成签到,获得积分10
5秒前
5秒前
yuxi2025完成签到 ,获得积分10
5秒前
辉099411完成签到 ,获得积分10
6秒前
7秒前
MYSHOW完成签到,获得积分10
7秒前
碧桐书院完成签到,获得积分10
7秒前
wyby完成签到 ,获得积分10
7秒前
动听平露完成签到,获得积分10
8秒前
swinging完成签到,获得积分20
8秒前
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
TRY发布了新的文献求助10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
小青椒应助科研通管家采纳,获得30
9秒前
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348074
求助须知:如何正确求助?哪些是违规求助? 4482327
关于积分的说明 13950024
捐赠科研通 4380886
什么是DOI,文献DOI怎么找? 2407159
邀请新用户注册赠送积分活动 1399667
关于科研通互助平台的介绍 1372955