材料科学
离子键合
热电效应
离子液体
热电材料
机械能
纳米技术
微观结构
工作(物理)
相(物质)
聚合物
热的
塞贝克系数
能量收集
可穿戴计算机
热能
化学物理
导电体
离子电导率
可穿戴技术
软质材料
离子
热电发电机
相变
热涨落
生物电子学
电压
储能
光电子学
作者
Junjian Zheng,Zi-xian Dong,Senpeng Jiang,Yuzhi Hu,Rui Gao,Yaru Yue,Sang-Jin Yang,Xin Fan,Feng Li,Yujie Zheng,Kuan Sun,Changduk Yang,Shanshan Chen
标识
DOI:10.1002/adfm.202518121
摘要
Abstract The integration of high thermoelectric performance, mechanical compliance, and self‐healing capability in ionic conductors remains a fundamental challenge for wearable energy technologies. Here, these limitations are overcome through the thermodynamic design of phase‐separated ionic gels. By precisely modulating the interactions between the in situ polymerizable hydrophilic matrix (PDAC) (Poly([2‐(Acryloyloxy)ethyl]dimethylammonium chloride)) and the hydrophobic ionic liquid (EMIM:TFSI) (1‐ethyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide), spontaneous formation of bicontinuous microstructures is achieved that simultaneously deliver record‐high thermopower (30.80 mV K −1 ), exceptional mechanical properties (762% strain, 2862.51 kJ m −3 toughness), and self‐healing efficiency (85% thermal voltage retention). The microstructure emerges from balanced enthalpic‐entropic contributions as predicted by Flory‐Huggins theory, creating percolated ion‐selective transport channels within a deformable polymer skeleton while maintaining interfacial stability. This approach overcomes the long‐standing trade‐offs among ionic thermophoresis, mechanical robustness, and reparability in conventional ionic thermoelectrics. As a demonstration, 3D‐printed stretchable thermoelectric wristbands with outstanding energy‐harvesting performance are fabricated. The work establishes a paradigm for multifunctional ionic materials, with immediate applications in wearable thermal energy harvesting and adaptive sensors, while providing a framework for next‐generation soft electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI