聚酰亚胺
帕利烯
材料科学
电介质
复合数
化学气相沉积
复合材料
聚合物
电容器
聚合
介电强度
图层(电子)
纳米技术
光电子学
电压
电气工程
工程类
作者
Aftab Ahmad,Guanghui Liu,Shimo Cao,Xuepeng Liu,Jinpeng Luo,Li Han,Hui Tong,Ju Xu
标识
DOI:10.1002/marc.202200568
摘要
The development of novel polymer dielectrics with enhanced dielectric performance is a great challenge for application of film capacitors in modern electronics and electrical systems. Herein, an innovative approach of chemical vapor deposition polymerization technology is proposed to prepare the all-organic sandwich structured parylene/polyimide/parylene (Py/PI/Py) composite films by employing poly(chloro-para-xylylene) (parylene C) as the outer layers and polyimide (PI) as the inner layer. The Py/PI/Py composites exhibit superior thermal resistance and outstanding mechanical properties. Moreover, thanks to the interfacial effect which contributes to reinforcing the dielectric response and the thickness effect which facilitates improving the breakdown strength, the dielectric performance of Py/PI/Py composites has been enhanced significantly. Accordingly, dielectric constant of 4.52-5.09, dissipation factor of 0.21-1.01%, and breakdown strength of 307-460 MV m-1 are achieved. Besides, notable energy storage performance is also obtained in Py/PI/Py composite dielectrics. Consequently, this novel application of chemical vapor deposition polymerization method in preparing all-organic multilayered polymer composite films with sandwich structure shows promising potential in film capacitor applications in harsh conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI