已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal Emotion Recognition based on Facial Expressions, Speech, and EEG

计算机科学 过度拟合 人工智能 卷积神经网络 深度学习 特征提取 语音识别 面部表情 脑电图 判别式 模式识别(心理学) 人工神经网络 情绪分类 情感计算 稳健性(进化) 心理学 基因 精神科 生物化学 化学
作者
Jiahui Pan,Weijie Fang,Zhihang Zhang,Bingzhi Chen,Zhao Zhang,Shuihua Wang
出处
期刊:IEEE open journal of engineering in medicine and biology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-8 被引量:1
标识
DOI:10.1109/ojemb.2023.3240280
摘要

Goal : As an essential human-machine interactive task, emotion recognition has become an emerging area over the decades. Although previous attempts to classify emotions have achieved high performance, several challenges remain open: 1) How to effectively recognize emotions using different modalities remains challenging. 2) Due to the increasing amount of computing power required for deep learning, how to provide real-time detection and improve the robustness of deep neural networks is important. Method: In this paper, we propose a deep learning-based multimodal emotion recognition (MER) called Deep-Emotion, which can adaptively integrate the most discriminating features from facial expressions, speech, and electroencephalogram (EEG) to improve the performance of the MER. Specifically, the proposed Deep-Emotion framework consists of three branches, i.e., the facial branch, speech branch, and EEG branch. Correspondingly, the facial branch uses the improved GhostNet neural network proposed in this paper for feature extraction, which effectively alleviates the overfitting phenomenon in the training process and improves the classification accuracy compared with the original GhostNet network. For work on the speech branch, this paper proposes a lightweight fully convolutional neural network (LFCNN) for the efficient extraction of speech emotion features. Regarding the study of EEG branches, we proposed a tree-like LSTM (tLSTM) model capable of fusing multi-stage features for EEG emotion feature extraction. Finally, we adopted the strategy of decision-level fusion to integrate the recognition results of the above three modes, resulting in more comprehensive and accurate performance. Result and Conclusions: Extensive experiments on the CK+, EMO-DB, and MAHNOB-HCI datasets have demonstrated the advanced nature of the Deep-Emotion method proposed in this paper, as well as the feasibility and superiority of the MER approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jemmy发布了新的文献求助10
1秒前
zLin发布了新的文献求助10
2秒前
4秒前
5秒前
zLin完成签到,获得积分10
9秒前
9秒前
章章发布了新的文献求助10
11秒前
14秒前
朱逸关注了科研通微信公众号
18秒前
浓浓完成签到 ,获得积分10
18秒前
19秒前
Leofar完成签到 ,获得积分10
25秒前
科研小菜鸡完成签到,获得积分10
25秒前
傅宣完成签到 ,获得积分10
28秒前
狂野老黑完成签到,获得积分10
29秒前
30秒前
打打应助luxiaoyu采纳,获得10
30秒前
默顿的笔记本完成签到,获得积分10
31秒前
33秒前
33秒前
Banff发布了新的文献求助10
37秒前
zyyxx完成签到 ,获得积分10
38秒前
小蘑菇应助可爱彩虹采纳,获得10
39秒前
江山发布了新的文献求助10
40秒前
annaanna完成签到 ,获得积分10
40秒前
Yoobao发布了新的文献求助10
40秒前
45秒前
万能图书馆应助贪玩函采纳,获得10
45秒前
叶十七完成签到,获得积分10
46秒前
Banff完成签到,获得积分10
48秒前
坦率白萱完成签到,获得积分10
50秒前
luxiaoyu发布了新的文献求助10
51秒前
聪明勇敢有力气完成签到 ,获得积分10
51秒前
58秒前
林一完成签到,获得积分10
1分钟前
冲冲冲完成签到 ,获得积分10
1分钟前
贪玩函发布了新的文献求助10
1分钟前
勤劳的沛山完成签到 ,获得积分10
1分钟前
丰富的小不完成签到,获得积分10
1分钟前
努力的淼淼完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4552510
求助须知:如何正确求助?哪些是违规求助? 3981779
关于积分的说明 12327604
捐赠科研通 3651430
什么是DOI,文献DOI怎么找? 2011147
邀请新用户注册赠送积分活动 1046210
科研通“疑难数据库(出版商)”最低求助积分说明 934787