Classification of Brain Tumor from Magnetic Resonance Imaging Using Vision Transformers Ensembling

计算机科学 磁共振成像 变压器 人工智能 脑瘤 人工神经网络 集合预报 机器学习 医学 放射科 病理 量子力学 物理 电压
作者
Sudhakar Tummala,Seifedine Kadry,Syed Ahmad Chan Bukhari,Hafiz Tayyab Rauf
出处
期刊:Current Oncology [Multidisciplinary Digital Publishing Institute]
卷期号:29 (10): 7498-7511 被引量:150
标识
DOI:10.3390/curroncol29100590
摘要

The automated classification of brain tumors plays an important role in supporting radiologists in decision making. Recently, vision transformer (ViT)-based deep neural network architectures have gained attention in the computer vision research domain owing to the tremendous success of transformer models in natural language processing. Hence, in this study, the ability of an ensemble of standard ViT models for the diagnosis of brain tumors from T1-weighted (T1w) magnetic resonance imaging (MRI) is investigated. Pretrained and finetuned ViT models (B/16, B/32, L/16, and L/32) on ImageNet were adopted for the classification task. A brain tumor dataset from figshare, consisting of 3064 T1w contrast-enhanced (CE) MRI slices with meningiomas, gliomas, and pituitary tumors, was used for the cross-validation and testing of the ensemble ViT model's ability to perform a three-class classification task. The best individual model was L/32, with an overall test accuracy of 98.2% at 384 × 384 resolution. The ensemble of all four ViT models demonstrated an overall testing accuracy of 98.7% at the same resolution, outperforming individual model's ability at both resolutions and their ensembling at 224 × 224 resolution. In conclusion, an ensemble of ViT models could be deployed for the computer-aided diagnosis of brain tumors based on T1w CE MRI, leading to radiologist relief.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助minmi采纳,获得10
2秒前
6秒前
yingchunyan发布了新的文献求助10
6秒前
6秒前
7秒前
9秒前
田様应助Aiopr采纳,获得10
9秒前
YSL发布了新的文献求助10
10秒前
JusT发布了新的文献求助10
10秒前
Legendary发布了新的文献求助10
11秒前
HE完成签到,获得积分10
11秒前
搜集达人应助杳杳采纳,获得10
12秒前
领导范儿应助yingchunyan采纳,获得10
14秒前
科研通AI6应助现代雪柳采纳,获得10
14秒前
量子星尘发布了新的文献求助50
15秒前
善学以致用应助尧煜一采纳,获得10
16秒前
18秒前
Legendary完成签到,获得积分10
18秒前
星辰大海应助追寻凌青采纳,获得10
19秒前
19秒前
LINGO完成签到 ,获得积分10
20秒前
JusT完成签到,获得积分10
20秒前
zz完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
wonwojo完成签到 ,获得积分10
23秒前
现代的艳血完成签到,获得积分10
23秒前
77O完成签到,获得积分10
24秒前
seasonweng完成签到,获得积分10
24秒前
YJY发布了新的文献求助10
25秒前
浮游应助z610938841采纳,获得200
25秒前
26秒前
26秒前
banbieshenlu完成签到,获得积分10
26秒前
呼吸小研狗完成签到,获得积分10
26秒前
蓝瘦灬香菇关注了科研通微信公众号
29秒前
科目三应助viming采纳,获得10
29秒前
小瓶子完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051577
求助须知:如何正确求助?哪些是违规求助? 4278851
关于积分的说明 13337718
捐赠科研通 4094101
什么是DOI,文献DOI怎么找? 2240783
邀请新用户注册赠送积分活动 1247258
关于科研通互助平台的介绍 1176413