A Proactive Approach to Fault Tolerance Using Predictive Machine Learning Models in Distributed Systems

计算机科学 容错 分布式计算 人工智能 机器学习
作者
Mohammad Haroon,Zeeshan Ali Siddiqui,Mohammad Husain,Arshad Ali,Tameem Ahmad
出处
期刊:International journal of experimental research and review [International Academic Publishing House]
卷期号:44: 208-220 被引量:5
标识
DOI:10.52756/ijerr.2024.v44spl.018
摘要

In the era of cloud computing and large-scale distributed systems, ensuring uninterrupted service and operational reliability is crucial. Conventional fault tolerance techniques usually take a reactive approach, addressing problems only after they arise. This can result in performance deterioration and downtime. With predictive machine learning models, this research offers a proactive approach to fault tolerance for distributed systems, preventing significant failures before they arise. Our research focuses on combining cutting-edge machine learning algorithms with real-time analysis of massive streams of operational data to predict abnormalities in the system and possible breakdowns. We employ supervised learning algorithms such as Random Forests and Gradient Boosting to predict faults with high accuracy. The predictive models are trained on historical data, capturing intricate patterns and correlations that precede system faults. Early defect detection made possible by this proactive approach enables preventative remedial measures to be taken, reducing downtime and preserving system integrity. To validate our approach, we designed and implemented a fault prediction framework within a simulated distributed system environment that mirrors contemporary cloud architectures. Our experiments demonstrate that the predictive models can successfully forecast a wide range of faults, from hardware failures to network disruptions, with significant lead time, providing a critical window for implementing preventive measures. Additionally, we assessed the impact of these pre-emptive actions on overall system performance, highlighting improved reliability and a reduction in mean time to recovery (MTTR). We also analyse the scalability and adaptability of our proposed solution within diverse and dynamic distributed environments. Through seamless integration with existing monitoring and management tools, our framework significantly enhances fault tolerance capabilities without requiring extensive restructuring of current systems. This work introduces a proactive approach to fault tolerance in distributed systems using predictive machine learning models. Unlike traditional reactive methods that respond to failures after they occur, this work focuses on anticipating faults before they happen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满以云完成签到,获得积分10
1秒前
2秒前
3秒前
Ava应助Yelanjiao采纳,获得10
3秒前
xiaohao完成签到 ,获得积分10
4秒前
su发布了新的文献求助10
5秒前
7秒前
迟迟完成签到 ,获得积分10
7秒前
星辰大海应助Yang采纳,获得30
7秒前
Lky发布了新的文献求助10
9秒前
拂晓完成签到,获得积分10
13秒前
13秒前
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
陈佳琪应助科研通管家采纳,获得10
18秒前
陈佳琪应助科研通管家采纳,获得10
18秒前
小飞七应助科研通管家采纳,获得10
18秒前
CR7应助科研通管家采纳,获得20
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
鸣笛应助科研通管家采纳,获得30
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
闾丘志泽发布了新的文献求助10
19秒前
田様应助靖哥哥采纳,获得30
22秒前
en完成签到,获得积分10
23秒前
情怀应助Feo采纳,获得10
24秒前
25秒前
26秒前
Ann完成签到,获得积分10
26秒前
华仔应助en采纳,获得10
27秒前
Yang完成签到,获得积分20
27秒前
科目三应助知止采纳,获得10
28秒前
九儿发布了新的文献求助10
30秒前
伊叶之丘完成签到 ,获得积分10
31秒前
那位大人发布了新的文献求助10
31秒前
ff发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942561
求助须知:如何正确求助?哪些是违规求助? 3487798
关于积分的说明 11045381
捐赠科研通 3218325
什么是DOI,文献DOI怎么找? 1778815
邀请新用户注册赠送积分活动 864442
科研通“疑难数据库(出版商)”最低求助积分说明 799483