Assessment of a probabilistic supervised machine learning method to estimate biomass expansion and conversion factors: A case study on cedar and pine trees.

生物量(生态学) 概率逻辑 林业 数学 机器学习 环境科学 人工智能 统计 计算机科学 生物 生态学 地理
作者
Maria J. Diamantopoulou,Emine Kurnaz,Şerife KALKANLI,Şükrü Teoman Güner,Aydın Çömez,Ramazan Özçelík
出处
期刊:Canadian Journal of Forest Research [NRC Research Press]
标识
DOI:10.1139/cjfr-2024-0135
摘要

Quantifying tree and forest biomass is crucial for formulating effective forest policy and management, given its role in human resource use and carbon storage. Forest biomass significantly contributes to environmental quality by absorbing carbon dioxide. Current research focuses on determining biomass factors for various tree species. This study employed both standard non-linear regression (NLR) and Gaussian process regression (GPR), a machine learning method using artificial intelligence, to estimate and predict biomass expansion and conversion factors accurately. The case study included plantation and naturally occurring cedar and pine trees in Türkiye's Western Anatolian Region and Göller Region. Non-linear regression used Levenberg-Marquardt optimization method, while Gaussian process regression employed radial basis function kernel. This dual approach allowed for assessing prediction uncertainties. The models constructed using GPR show superior performance compared to NLR models for both biomass factors and species within the datasets used. According to Furnival evaluation metric values, accuracy of the NLR models was 1.05 to 1.34 times lower than that of corresponding GPR models. Overall findings highlight the significant potential of Gaussian process regression for accurately estimating and predicting biomass factors with high variances. This emphasizes its utility in modeling scenarios that require high flexibility, such as tree biomass prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俄而完成签到 ,获得积分10
刚刚
lvvyy完成签到,获得积分10
刚刚
领导范儿应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
Ava应助练习者采纳,获得10
2秒前
3秒前
打打应助迅速冰岚采纳,获得30
4秒前
202483067完成签到 ,获得积分10
4秒前
5秒前
5秒前
小刺猬完成签到,获得积分10
5秒前
喜马拉雅川完成签到,获得积分10
5秒前
传奇3应助米里迷路采纳,获得10
5秒前
科研通AI5应助liusui采纳,获得30
5秒前
zxc完成签到,获得积分10
5秒前
传奇3应助HJJHJH采纳,获得10
5秒前
Kane发布了新的文献求助10
6秒前
7秒前
Akim应助dsdjsicj采纳,获得10
7秒前
7秒前
所所应助自由的石头采纳,获得30
7秒前
yyhgyg完成签到,获得积分10
8秒前
8秒前
独特的清发布了新的文献求助20
9秒前
Dolphin123发布了新的文献求助10
9秒前
10秒前
zxc发布了新的文献求助10
10秒前
Stalin发布了新的文献求助20
10秒前
Lucas应助奥特曼采纳,获得10
10秒前
英姑应助boboking采纳,获得10
10秒前
10秒前
11秒前
无花果应助li采纳,获得30
11秒前
高会和发布了新的文献求助10
11秒前
11秒前
11秒前
共享精神应助good233采纳,获得10
12秒前
13秒前
ww完成签到 ,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786934
求助须知:如何正确求助?哪些是违规求助? 3332593
关于积分的说明 10256397
捐赠科研通 3047840
什么是DOI,文献DOI怎么找? 1672734
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271