Antihypertensive Drug Recommendations for Reducing Arterial Stiffness in Hypertensive Patients: A Machine Learning-Based Multi-Cohort Study (RIGIPREV Study) (Preprint)

预印本 医学 抗高血压药 动脉硬化 队列 药品 物理疗法 内科学 血压 药理学 计算机科学 万维网
作者
Iván Cavero‐Redondo,Arturo Martínez‐Rodrigo,Alicia Saz‐Lara,Nerea Moreno-Herráiz,Verónica Casado Vicente,Leticia Gómez‐Sánchez,Luis García‐Ortiz,Manuel A. Gómez‐Marcos
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e54357-e54357
标识
DOI:10.2196/54357
摘要

Background High systolic blood pressure is one of the leading global risk factors for mortality, contributing significantly to cardiovascular diseases. Despite advances in treatment, a large proportion of patients with hypertension do not achieve optimal blood pressure control. Arterial stiffness (AS), measured by pulse wave velocity (PWV), is an independent predictor of cardiovascular events and overall mortality. Various antihypertensive drugs exhibit differential effects on PWV, but the extent to which these effects vary depending on individual patient characteristics is not well understood. Given the complexity of selecting the most appropriate antihypertensive medication for reducing PWV, machine learning (ML) techniques offer an opportunity to improve personalized treatment recommendations. Objective This study aims to develop an ML model that provides personalized recommendations for antihypertensive medications aimed at reducing PWV. The model considers individual patient characteristics, such as demographic factors, clinical data, and cardiovascular measurements, to identify the most suitable antihypertensive agent for improving AS. Methods This study, known as the RIGIPREV study, used data from the EVA, LOD-DIABETES, and EVIDENT studies involving individuals with hypertension with baseline and follow-up measurements. Antihypertensive drugs were grouped into classes such as angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), β-blockers, diuretics, and combinations of diuretics with ACEIs or ARBs. The primary outcomes were carotid-femoral and brachial-ankle PWV, while the secondary outcomes included various cardiovascular, anthropometric, and biochemical parameters. A multioutput regressor using 6 random forest models was used to predict the impact of each antihypertensive class on PWV reduction. Model performance was evaluated using the coefficient of determination (R2) and mean squared error. Results The random forest models exhibited strong predictive capabilities, with internal validation yielding R2 values between 0.61 and 0.74, while external validation showed a range of 0.26 to 0.46. The mean squared values ranged from 0.08 to 0.22 for internal validation and from 0.29 to 0.45 for external validation. Variable importance analysis revealed that glycated hemoglobin and weight were the most critical predictors for ACEIs, while carotid-femoral PWV and total cholesterol were key variables for ARBs. The decision tree model achieved an accuracy of 84.02% in identifying the most suitable antihypertensive drug based on individual patient characteristics. Furthermore, the system’s recommendations for ARBs matched 55.3% of patients’ original prescriptions. Conclusions This study demonstrates the utility of ML techniques in providing personalized treatment recommendations for antihypertensive therapy. By accounting for individual patient characteristics, the model improves the selection of drugs that control blood pressure and reduce AS. These findings could significantly aid clinicians in optimizing hypertension management and reducing cardiovascular risk. However, further studies with larger and more diverse populations are necessary to validate these results and extend the model’s applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
刚刚
2251877528完成签到,获得积分10
2秒前
林梓发布了新的文献求助10
3秒前
闪闪的妙竹完成签到 ,获得积分10
4秒前
迷路的朋友完成签到,获得积分10
4秒前
崔宁宁完成签到 ,获得积分10
5秒前
烟花应助都是采纳,获得10
5秒前
李白乘完成签到 ,获得积分10
7秒前
科研小菜狗关注了科研通微信公众号
8秒前
情怀应助Simonking采纳,获得10
9秒前
12秒前
钦影发布了新的文献求助10
12秒前
冷艳的竺完成签到,获得积分10
13秒前
14秒前
chen完成签到,获得积分10
15秒前
15秒前
16秒前
小莫发布了新的文献求助10
17秒前
灵巧慕凝完成签到,获得积分10
18秒前
冷艳的竺发布了新的文献求助10
19秒前
Ogai完成签到,获得积分10
21秒前
Leslie发布了新的文献求助10
21秒前
Jasper应助Simonking采纳,获得10
21秒前
Alien完成签到,获得积分10
22秒前
许慢慢完成签到,获得积分20
23秒前
冰糖葫芦娃完成签到 ,获得积分10
25秒前
hammer完成签到,获得积分10
26秒前
27秒前
28秒前
29秒前
lm完成签到 ,获得积分10
29秒前
Kyone完成签到,获得积分10
30秒前
赵小胖完成签到,获得积分10
33秒前
都是发布了新的文献求助10
33秒前
吴丽雪发布了新的文献求助10
33秒前
tuzhifengyin完成签到,获得积分10
34秒前
NexusExplorer应助学术小白采纳,获得10
35秒前
36秒前
keke完成签到,获得积分10
36秒前
36秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816942
求助须知:如何正确求助?哪些是违规求助? 3360342
关于积分的说明 10407653
捐赠科研通 3078322
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 814001
科研通“疑难数据库(出版商)”最低求助积分说明 767958