Learning together: Towards foundation models for machine learning interatomic potentials with meta-learning

机器学习 人工智能 计算机科学 杠杆(统计) 过程(计算) 操作系统
作者
Alice Allen,Nicholas Lubbers,Sakib Matin,Justin S. Smith,Richard A. Messerly,Sergei Tretiak,Kipton Barros
出处
期刊:npj computational materials [Nature Portfolio]
卷期号:10 (1) 被引量:5
标识
DOI:10.1038/s41524-024-01339-x
摘要

Abstract The development of machine learning models has led to an abundance of datasets containing quantum mechanical (QM) calculations for molecular and material systems. However, traditional training methods for machine learning models are unable to leverage the plethora of data available as they require that each dataset be generated using the same QM method. Taking machine learning interatomic potentials (MLIPs) as an example, we show that meta-learning techniques, a recent advancement from the machine learning community, can be used to fit multiple levels of QM theory in the same training process. Meta-learning changes the training procedure to learn a representation that can be easily re-trained to new tasks with small amounts of data. We then demonstrate that meta-learning enables simultaneously training to multiple large organic molecule datasets. As a proof of concept, we examine the performance of a MLIP refit to a small drug-like molecule and show that pre-training potentials to multiple levels of theory with meta-learning improves performance. This difference in performance can be seen both in the reduced error and in the improved smoothness of the potential energy surface produced. We therefore show that meta-learning can utilize existing datasets with inconsistent QM levels of theory to produce models that are better at specializing to new datasets. This opens new routes for creating pre-trained, foundation models for interatomic potentials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll完成签到,获得积分10
2秒前
阿尔卑斯完成签到,获得积分10
3秒前
222123完成签到,获得积分10
6秒前
CipherSage应助谨慎的幻悲采纳,获得10
9秒前
我很开心完成签到,获得积分10
11秒前
13秒前
14秒前
16秒前
zzz发布了新的文献求助80
18秒前
默默的问玉完成签到,获得积分10
20秒前
博修发布了新的文献求助10
21秒前
21秒前
寂寞的迎天完成签到,获得积分10
21秒前
Last炫神丶完成签到,获得积分10
25秒前
科研小秦完成签到,获得积分10
25秒前
烟花应助我很开心采纳,获得30
25秒前
Hus11221发布了新的文献求助10
26秒前
失眠呆呆鱼完成签到 ,获得积分10
27秒前
顺利小天鹅完成签到,获得积分10
27秒前
littleE完成签到 ,获得积分10
27秒前
29秒前
谨慎的幻悲完成签到,获得积分20
30秒前
31秒前
赵小胖完成签到,获得积分10
31秒前
白白完成签到 ,获得积分10
32秒前
欣欣发布了新的文献求助10
33秒前
han完成签到,获得积分10
33秒前
芥楠完成签到,获得积分10
33秒前
35秒前
充电宝应助博修采纳,获得10
36秒前
笨蛋琪露诺完成签到,获得积分10
36秒前
科研小白完成签到 ,获得积分10
38秒前
逸风望完成签到,获得积分10
39秒前
a_1发布了新的文献求助10
39秒前
hh发布了新的文献求助10
40秒前
周娅敏发布了新的文献求助10
40秒前
华中科技大学完成签到,获得积分10
43秒前
hh关闭了hh文献求助
46秒前
我是老大应助sjy采纳,获得10
52秒前
54秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3941368
求助须知:如何正确求助?哪些是违规求助? 3487043
关于积分的说明 11041280
捐赠科研通 3217291
什么是DOI,文献DOI怎么找? 1778236
邀请新用户注册赠送积分活动 864030
科研通“疑难数据库(出版商)”最低求助积分说明 799243