Highly active nitrogen – doped carbon nanostructures as electrocatalysts for bromine evolution reaction: A combined experimental and DFT study

化学 塔菲尔方程 催化作用 碳纤维 电子转移 无机化学 电化学 石墨烯 碳纳米管 氧化物 化学工程 物理化学 纳米技术 电极 材料科学 有机化学 复合材料 复合数 工程类
作者
Deeksha Jain,Jonathan Hightower,Dishari Basu,Vance Gustin,Qiang Zhang,Anne C. Co,Aravind Asthagiri,Umit S. Ozkan
出处
期刊:Journal of Catalysis [Elsevier BV]
卷期号:413: 1005-1016 被引量:6
标识
DOI:10.1016/j.jcat.2022.08.002
摘要

Electrocatalytic bromine evolution reaction (BER) is significant for bromine production, energy storage, and wastewater treatment applications. Previously reported electrocatalysts for BER either include unstable graphite anodes or precious metal-containing materials. To overcome their disadvantages, this work has proposed, for the first time, the use of nitrogen-doped carbon nanostructures (CNx) as anode catalysts for BER in acidic medium. In terms of BER activity, CNx outperforms both Vulcan Carbon and commercial 10 % Pt/C at bromide concentration as low as 0.025 M. CNx also exhibits high BER selectivity and remarkable stability at highly oxidizing potentials. Tafel slope was measured to be ∼ 120 mV/dec supporting a first electron transfer limiting step for BER on CNx. The high activity and stability of CNx is attributed to several nitrogen-doped carbon sites in its graphitic matrix, which have been examined using DFT. The inclusion of oxygen evolution reaction (OER) intermediates is critical to identify BER active sites accurately, as the most active sites (zigzag pyridinic, zigzag oxide, and pyrrolic oxide) proceed via a OH*-mediated Volmer-Heyrovsky mechanism. For these sites, DFT predicts that the potential determining step is the first electron transfer to form Br* in agreement with the experimental Tafel slope. Comparison to post-reaction XPS shows good agreement between DFT predicted Br* structures. This work thus provides a direction for the rational design of CNx electrocatalysts for BER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助777采纳,获得10
刚刚
刚刚
Lucas应助饱满小兔子采纳,获得30
刚刚
刚刚
jnn完成签到,获得积分20
刚刚
MoleMed发布了新的文献求助20
1秒前
研友_VZG64n发布了新的文献求助10
2秒前
隐形曼青应助1234567890采纳,获得10
3秒前
放放风完成签到,获得积分10
3秒前
窝趣嘞完成签到 ,获得积分10
3秒前
gu发布了新的文献求助10
3秒前
lw发布了新的文献求助30
3秒前
charry完成签到,获得积分10
3秒前
4秒前
无尽夏完成签到,获得积分10
4秒前
4秒前
胡一鸣发布了新的文献求助10
4秒前
和谐幻柏完成签到,获得积分10
4秒前
Beyond095发布了新的文献求助10
5秒前
爱吃黄豆完成签到,获得积分10
5秒前
洛洛发布了新的文献求助10
5秒前
5秒前
丘比特应助智海瑞采纳,获得10
6秒前
6秒前
WHITE完成签到,获得积分10
7秒前
Jasper应助sdl采纳,获得10
7秒前
杭亦寒发布了新的文献求助50
7秒前
8秒前
晚风发布了新的文献求助30
8秒前
科研通AI2S应助归971003采纳,获得10
8秒前
songxu223完成签到,获得积分20
8秒前
呆呆子完成签到,获得积分10
10秒前
科研废物完成签到,获得积分10
10秒前
聪明帅哥完成签到,获得积分10
10秒前
和谐幻柏发布了新的文献求助10
10秒前
10秒前
10秒前
艾岚完成签到,获得积分10
10秒前
李爱国应助双方的采纳,获得10
11秒前
ZDZ发布了新的文献求助10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054