Exploring the Low-Dose Limit for Focal Hepatic Lesion Detection with a Deep Learning-Based CT Reconstruction Algorithm: A Simulation Study on Patient Images

医学 核医学 病变 迭代重建 图像质量 辐射剂量 放射科 算法 数学 人工智能 计算机科学 病理 图像(数学)
作者
Yongchun You,Sihua Zhong,Guozhi Zhang,Yuting Wen,Dian Guo,Wanjiang Li,Zhenlin Li
标识
DOI:10.1007/s10278-024-01080-3
摘要

This study aims to investigate the maximum achievable dose reduction for applying a new deep learning-based reconstruction algorithm, namely the artificial intelligence iterative reconstruction (AIIR), in computed tomography (CT) for hepatic lesion detection. A total of 40 patients with 98 clinically confirmed hepatic lesions were retrospectively included. The mean volume CT dose index was 13.66 ± 1.73 mGy in routine-dose portal venous CT examinations, where the images were originally obtained with hybrid iterative reconstruction (HIR). Low-dose simulations were performed in projection domain for 40%-, 20%-, and 10%-dose levels, followed by reconstruction using both HIR and AIIR. Two radiologists were asked to detect hepatic lesion on each set of low-dose image in separate sessions. Qualitative metrics including lesion conspicuity, diagnostic confidence, and overall image quality were evaluated using a 5-point scale. The contrast-to-noise ratio (CNR) for lesion was also calculated for quantitative assessment. The lesion CNR on AIIR at reduced doses were significantly higher than that on routine-dose HIR (all p < 0.05). Lower qualitative image quality was observed as the radiation dose reduced, while there were no significant differences between 40%-dose AIIR and routine-dose HIR images. The lesion detection rate was 100%, 98% (96/98), and 73.5% (72/98) on 40%-, 20%-, and 10%-dose AIIR, respectively, whereas it was 98% (96/98), 73.5% (72/98), and 40% (39/98) on the corresponding low-dose HIR, respectively. AIIR outperformed HIR in simulated low-dose CT examinations of the liver. The use of AIIR allows up to 60% dose reduction for lesion detection while maintaining comparable image quality to routine-dose HIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
galioo3000完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
两张发布了新的文献求助10
2秒前
Liu完成签到,获得积分10
3秒前
科研通AI5应助mikasa采纳,获得10
3秒前
浮游应助ZYJ采纳,获得10
3秒前
DijiaXu应助dew采纳,获得10
3秒前
大傻春发布了新的文献求助10
3秒前
growl完成签到,获得积分10
3秒前
Liu发布了新的文献求助10
3秒前
北陆小猫发布了新的文献求助10
3秒前
5秒前
6秒前
7秒前
思源应助两张采纳,获得10
7秒前
7秒前
解语花发布了新的文献求助10
8秒前
8秒前
nono完成签到,获得积分10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
jackzzs完成签到,获得积分10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
桐桐应助Ffffa采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得30
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
Guyong发布了新的文献求助10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
long应助科研通管家采纳,获得20
9秒前
豆豆完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068797
求助须知:如何正确求助?哪些是违规求助? 4290368
关于积分的说明 13367314
捐赠科研通 4110189
什么是DOI,文献DOI怎么找? 2250823
邀请新用户注册赠送积分活动 1256000
关于科研通互助平台的介绍 1188539