Surface Wave, Skin Effect, and Per Unit Length Parameters of the Single-Wire Transmission Line at Low Frequency, for Nonmagnetic and Magnetic Wires

电感 皮肤效应 导线 输电线路 电容 电力传输 导电体 材料科学 动电感 声学 物理 电气工程 光学 电压 工程类 复合材料 电极 量子力学
作者
J. A. Brandão Faria,Rodolfo Araneo,Erika Stracqualursi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 59621-59635 被引量:3
标识
DOI:10.1109/access.2023.3283917
摘要

Surface wave technology for high-speed communications is a current research topic aimed to respond to increasing data rate demands on existing copper infrastructures. Also, the topic of surface waves has recently gained importance in the modeling of transmission line towers hit by lightning strikes with spectral content in the megahertz band. The single-wire transmission line structure (return conductor absent) cannot support TEM waves; it supports a TM Sommerfeld wave fully described by two propagation constants and two characteristic impedances. Nonetheless, the literature on single-wire transmission-line structures has been employing quasi-static per unit length constitutive parameters, inductance and capacitance, borrowed from ordinary two-conductor transmission line TEM analysis. This work develops, discusses, and compares various possible definitions of these constitutive parameters using different physical approaches: TEM-approach, circuit-approach, and energy-approach. Numerical results for nonmagnetic and magnetic wires, copper and steel wires, respectively, are obtained in the range 1 Hz to 1 GHz. Our analysis shows that in some circumstances the TEM and circuit approaches may lead to nonphysical results, but, remarkably, all the approaches seem to converge to a common dominant term either in the per unit length capacitance or in the per unit length inductance, whose product is frequency-invariant. Considering the different approaches under discussion, the differences among the observed results for the per unit length constitutive parameters are negligibly small, of second-order importance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
687发布了新的文献求助10
2秒前
2秒前
GM完成签到,获得积分10
3秒前
3秒前
3秒前
无花果应助萌面大侠采纳,获得10
4秒前
4秒前
吉尼斯贝贝完成签到 ,获得积分10
4秒前
5秒前
6秒前
GM发布了新的文献求助10
6秒前
Dharma_Bums发布了新的文献求助10
6秒前
7秒前
8秒前
Stormi发布了新的文献求助10
8秒前
pluto应助Ly采纳,获得10
8秒前
9秒前
Szw666完成签到,获得积分10
9秒前
9秒前
小阿巴发布了新的文献求助10
9秒前
hahhaha完成签到,获得积分20
9秒前
小小k完成签到,获得积分10
10秒前
Dtt发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
yyl发布了新的文献求助10
11秒前
yn完成签到 ,获得积分10
11秒前
上上签完成签到,获得积分10
11秒前
zheng_chen发布了新的文献求助10
12秒前
12秒前
覆辙完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
阿黄完成签到,获得积分10
14秒前
待定发布了新的文献求助10
14秒前
Kelly完成签到,获得积分10
15秒前
lindsey完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655717
求助须知:如何正确求助?哪些是违规求助? 4800177
关于积分的说明 15073698
捐赠科研通 4814168
什么是DOI,文献DOI怎么找? 2575555
邀请新用户注册赠送积分活动 1530927
关于科研通互助平台的介绍 1489596