Resource efficient PV power forecasting: Transductive transfer learning based hybrid deep learning model for smart grid in Industry 5.0

计算机科学 超参数 人工智能 超参数优化 光伏系统 机器学习 深度学习 学习迁移 卷积神经网络 支持向量机 工程类 电气工程
作者
Umer Amir Khan,Noman Mujeeb Khan,Muhammad Hamza Zafar
出处
期刊:Energy Conversion And Management: X [Elsevier BV]
卷期号:20: 100486-100486 被引量:12
标识
DOI:10.1016/j.ecmx.2023.100486
摘要

This paper presents an innovative approach for enhancing power output forecasting of Photovoltaic (PV) power plants in dynamic environmental conditions using a Hybrid Deep Learning Model (DLM). The hybrid DLM employs a synergy of Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) network, and Bidirectional LSTM (Bi-LSTM), effectively capturing spatial and temporal dependencies within weather data crucial for accurate predictions. To optimize the DLM's performance efficiently, a unique Kepler Optimization Algorithm (KOA) is introduced for hyperparameter tuning, drawing inspiration from Kepler's laws of planetary motion. By leveraging KOA, the DLM attains optimal hyperparameter configurations, elevating power output prediction precision. Additionally, this study integrates Transductive Transfer Learning (TTL) with the deep learning models to enhance resource efficiency. By leveraging knowledge gained from previously learned tasks, TTL enables the DLM to improve its forecasting capabilities while minimizing resource utilization. Datasets encompassing environmental parameters and PV plant-generated power across diverse sites are employed for DLM training and testing. Three hybrid models, amalgamating KOA, CNN, LSTM, and Bi-LSTM techniques, are introduced and evaluated. Comparative assessment of these models across distinct PV sites yields insightful observations. Performance evaluation, focused on short-term PV power forecasting, underscores the hybrid DLM's superiority over individual CNN and LSTM models. This hybrid approach achieves remarkable accuracy and resilience in predicting power output under varying weather conditions, showcasing its potential for efficient PV power plant management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xgq001835完成签到 ,获得积分10
刚刚
1秒前
思源应助JinHuang采纳,获得10
1秒前
北过居庸完成签到,获得积分10
3秒前
Kris发布了新的文献求助30
4秒前
张怀民发布了新的文献求助10
6秒前
科研通AI5应助萨伊普采纳,获得200
6秒前
懵智完成签到,获得积分10
7秒前
8秒前
lixian完成签到,获得积分20
8秒前
liyongxing125完成签到,获得积分10
8秒前
9秒前
我是老大应助iii采纳,获得10
9秒前
祁乐天完成签到,获得积分10
9秒前
达达利亚完成签到,获得积分10
10秒前
11秒前
11秒前
ZZ完成签到,获得积分10
12秒前
12秒前
达达利亚发布了新的文献求助10
12秒前
zc发布了新的文献求助10
13秒前
13秒前
景旖旎完成签到,获得积分10
14秒前
祁乐天发布了新的文献求助10
14秒前
纹银完成签到,获得积分10
15秒前
16秒前
junzilan完成签到,获得积分10
17秒前
17秒前
月儿发布了新的文献求助10
17秒前
lzm完成签到,获得积分10
18秒前
张元元完成签到,获得积分10
19秒前
LYDZ1发布了新的文献求助10
19秒前
hyl发布了新的文献求助10
19秒前
CipherSage应助双椒兔丁采纳,获得10
21秒前
希望天下0贩的0应助无言采纳,获得10
21秒前
22秒前
iii发布了新的文献求助10
22秒前
优美银耳汤完成签到 ,获得积分10
24秒前
24秒前
张怀民完成签到 ,获得积分20
25秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844409
求助须知:如何正确求助?哪些是违规求助? 3386825
关于积分的说明 10546263
捐赠科研通 3107318
什么是DOI,文献DOI怎么找? 1711685
邀请新用户注册赠送积分活动 824140
科研通“疑难数据库(出版商)”最低求助积分说明 774563