Defect identification method for ultrasonic inspection of pipeline welds based on cross-modal zero-shot learning

计算机科学 人工智能 分类器(UML) 管道(软件) 判别式 模式识别(心理学) 情态动词 特征(语言学) 焊接 特征向量 机器学习 材料科学 哲学 高分子化学 程序设计语言 语言学 冶金
作者
Zeyu Yu,Qi Ma,Yuan Hongqiang,Du guofeng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025009-025009 被引量:2
标识
DOI:10.1088/1361-6501/ad0613
摘要

Abstract Ultrasonic inspection of pipeline welds still uses the traditional visual inspection signal method to identify pipeline defects. The identification of defects relies entirely on the subjective judgment of practitioners and is highly dependent on their level of experience. Deep learning models have achieved very good results in classification tasks, but they rely on a large number of annotated data samples for each category. However, it is difficult to collect a large number of samples with different defects and annotate them for the classification of pipe welding defects. Based on the idea of zero-shot learning (ZSL), which makes full use of experts’ semantic descriptions of defect categories, artificial semantic features are integrated cross-modally with ultrasonic inspection signal features. In this way, a common semantic space containing seen and unseen classes is constructed to achieve the detection of various defects. Meanwhile, to alleviate the problem of extreme imbalance of training data between the seen and unseen classes in ZSL model training, a ZSL model Feature-GAN-ZSL (FGZ) fused with a generative adversarial network (GAN) is proposed. The model utilizes a Feature-GAN network to generate unseen class features during training and adds a classifier to enhance the generation of features with stronger discriminative power. In the experiments, sample data for porosity, incomplete penetration, and cracks were used as visible classes, and samples for incomplete fusion and slag entrapment were used as unseen classes. Five state-of-the-art models in the ZSL domain were compared. The results show that the FGZ model has a good ability to recognize various defects, not only the types of defects that participated in the training but also the defects that did not participate in the training. This plays a perfect role in dealing with various pipeline welding defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tttt发布了新的文献求助10
2秒前
笨笨青筠完成签到 ,获得积分10
3秒前
5秒前
大模型应助smile采纳,获得30
6秒前
阿泽完成签到 ,获得积分10
8秒前
刘秀完成签到 ,获得积分10
9秒前
清欢驳回了SciGPT应助
9秒前
YJ应助Chen采纳,获得30
14秒前
张西西完成签到 ,获得积分10
15秒前
16秒前
八方面完成签到 ,获得积分10
18秒前
卷卷完成签到 ,获得积分10
18秒前
郑雅柔完成签到 ,获得积分0
19秒前
缓慢冬天完成签到,获得积分10
22秒前
smile发布了新的文献求助30
22秒前
cdercder应助科研通管家采纳,获得10
24秒前
今后应助科研通管家采纳,获得10
24秒前
cdercder应助科研通管家采纳,获得10
24秒前
xiaojian_291发布了新的文献求助10
24秒前
25秒前
zhaoyaoshi完成签到 ,获得积分10
28秒前
土土发布了新的文献求助10
30秒前
博士伦666完成签到 ,获得积分10
32秒前
Ilyas0525完成签到,获得积分10
33秒前
土土完成签到,获得积分10
38秒前
巫巫巫巫巫完成签到 ,获得积分0
39秒前
i1完成签到 ,获得积分10
43秒前
45秒前
cx完成签到,获得积分10
47秒前
雪山飞完成签到,获得积分10
48秒前
李键刚发布了新的文献求助10
48秒前
Wang发布了新的文献求助10
49秒前
52秒前
布吉岛呀完成签到 ,获得积分10
52秒前
logolush完成签到 ,获得积分10
52秒前
mrwang完成签到 ,获得积分10
57秒前
科研三井泽完成签到,获得积分10
58秒前
科研通AI5应助大橙子采纳,获得10
59秒前
1分钟前
TGU的小马同学完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792575
求助须知:如何正确求助?哪些是违规求助? 3336794
关于积分的说明 10282208
捐赠科研通 3053626
什么是DOI,文献DOI怎么找? 1675672
邀请新用户注册赠送积分活动 803659
科研通“疑难数据库(出版商)”最低求助积分说明 761495