Limited agricultural spectral dataset expansion based on generative adversarial networks

人工智能 马氏距离 计算机科学 深度学习 机器学习 边界(拓扑) 数学 模式识别(心理学) 数学分析
作者
Yican Huang,Zhengguang Chen,Jinming Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:215: 108385-108385 被引量:24
标识
DOI:10.1016/j.compag.2023.108385
摘要

With the rise of deep learning, the combination of spectroscopy analysis techniques and deep learning methods has been extensively utilized in the field of agriculture, such as the detection of crop diseases, soil analysis, and crop quality assessment. Unfortunately, it is often difficult to obtain enough spectral samples that can be used for deep learning because of environmental constraints, equipment limitations, and labour costs. To address this issue, we propose a spectral sample augmentation technique based on the K-condition boundary equilibrium generative adversarial networks (KC-BEGAN). First, a stable boundary equilibrium generative adversarial network (BEGAN) model is constructed, and the KC-BEGAN model is built by incorporating chemical property labels, multiscale gradient information, and the k-nearest neighbour algorithm. The goal is to enrich complete spectral samples with chemical properties. Second, we compare the differences between generated samples and real samples using methods such as t-distributed stochastic neighbour embedding, Mahalanobis distance, F test, and maximum mean discrepancy. Following data augmentation by the KC-BEGAN model, the R2 on the test set for traditional regression models (PLSR, SVR, RR, PCR) and deep regression models (Inception-ResNet, Inception, 1D-CNN) improved by 4.9%, 0.4%, 2.5%, 4.4%, 3.6%, 4.4%, and 6.8% respectively. Furthermore, this study replaces the GAN module in the KC-BEGAN model with Diffusion-GAN and conducts experiments following the same procedure to evaluate the feasibility of other GAN models in augmenting labelled near-infrared spectral samples. The research results indicate that the spectral samples generated by the KC-BEGAN model are reliable and can meet the expansion requirements of small-scale spectral sample sets. Simultaneously, replacing the GAN module in the KC-BEGAN model with other GAN models is also feasible, suggesting that the continuous label marking method proposed in this study is indeed effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8完成签到,获得积分0
1秒前
zyl发布了新的文献求助10
1秒前
杨涛发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助30
1秒前
2秒前
式微给式微的求助进行了留言
2秒前
3秒前
jerry发布了新的文献求助10
3秒前
4秒前
王哪跑12发布了新的文献求助10
4秒前
古铜完成签到 ,获得积分10
5秒前
彭佳丽完成签到,获得积分10
5秒前
LING完成签到 ,获得积分10
5秒前
帅气剑通完成签到,获得积分10
6秒前
7秒前
尊敬的丹烟完成签到,获得积分10
8秒前
damonvincent发布了新的文献求助10
9秒前
郭嘉仪发布了新的文献求助10
9秒前
打打应助zyl采纳,获得10
11秒前
cardiology发布了新的文献求助10
12秒前
12秒前
jerry完成签到,获得积分10
12秒前
Orange应助jos采纳,获得10
13秒前
充电宝应助尊敬的丹烟采纳,获得10
13秒前
酷波er应助向日葵采纳,获得10
14秒前
星辰大海应助damonvincent采纳,获得10
15秒前
领导范儿应助落阳采纳,获得10
15秒前
15秒前
16秒前
16秒前
19秒前
852应助月青悠采纳,获得30
19秒前
LmY大帅比完成签到,获得积分10
20秒前
莫泰甘宁发布了新的文献求助20
21秒前
混子完成签到,获得积分10
22秒前
22秒前
23秒前
liuzhanyu发布了新的文献求助10
23秒前
在水一方应助炫炫炫采纳,获得30
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4990904
求助须知:如何正确求助?哪些是违规求助? 4239640
关于积分的说明 13207664
捐赠科研通 4034323
什么是DOI,文献DOI怎么找? 2207244
邀请新用户注册赠送积分活动 1218305
关于科研通互助平台的介绍 1136629