Meta-analysis of single-cell RNA-sequencing data for depicting the transcriptomic landscape of chronic obstructive pulmonary disease

慢性阻塞性肺病 转录组 细胞 电池类型 发病机制 炎症 肥大细胞 疾病 病因学 医学 肺病 免疫学 免疫系统 单细胞分析 生物 基因 基因表达 病理 遗传学 内科学
作者
Yubin Lee,Jaeseung Song,Yeonbin Jeong,Eun‐Young Choi,Chul Woo Ahn,Wonhee Jang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107685-107685 被引量:7
标识
DOI:10.1016/j.compbiomed.2023.107685
摘要

Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by airflow limitation and chronic inflammation of the lungs that is a leading cause of death worldwide. Since the complete pathological mechanisms at the single-cell level are not fully understood yet, an integrative approach to characterizing the single-cell-resolution landscape of COPD is required. To identify the cell types and mechanisms associated with the development of COPD, we conducted a meta-analysis using three single-cell RNA-sequencing datasets of COPD. Among the 154,011 cells from 16 COPD patients and 18 healthy subjects, 17 distinct cell types were observed. Of the 17 cell types, monocytes, mast cells, and alveolar type 2 cells (AT2 cells) were found to be etiologically implicated in COPD based on genetic and transcriptomic features. The most transcriptomically diversified states of the three etiological cell types showed significant enrichment in immune/inflammatory responses (monocytes and mast cells) and/or mitochondrial dysfunction (monocytes and AT2 cells). We then identified three chemical candidates that may potentially induce COPD by modulating gene expression patterns in the three etiological cell types. Overall, our study suggests the single-cell level mechanisms underlying the pathogenesis of COPD and may provide information on toxic compounds that could be potential risk factors for COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peterlzb1234567完成签到,获得积分10
1秒前
光头强完成签到,获得积分10
2秒前
陈豆豆完成签到 ,获得积分10
2秒前
hyf567完成签到,获得积分10
3秒前
情怀应助陳.采纳,获得10
4秒前
无为完成签到 ,获得积分10
7秒前
9秒前
斯文的慕儿完成签到,获得积分10
9秒前
10秒前
当女遇到乔完成签到 ,获得积分10
10秒前
wangxiaoer完成签到,获得积分10
11秒前
赵怼怼完成签到,获得积分10
12秒前
小雨点完成签到 ,获得积分10
13秒前
13秒前
大大完成签到 ,获得积分10
14秒前
15秒前
Silieze完成签到,获得积分10
16秒前
shalimar完成签到,获得积分10
16秒前
16秒前
自然归尘完成签到 ,获得积分10
18秒前
wanci应助磊磊采纳,获得10
18秒前
Jayzie完成签到 ,获得积分10
18秒前
执着新蕾发布了新的文献求助10
19秒前
小小酥被卷了完成签到,获得积分10
19秒前
文车完成签到,获得积分20
19秒前
FashionBoy应助芝芝为荔枝采纳,获得10
21秒前
Zippo完成签到,获得积分10
21秒前
陳.完成签到 ,获得积分10
22秒前
HuanChen完成签到,获得积分10
22秒前
22秒前
hannah完成签到 ,获得积分10
22秒前
HughWang完成签到,获得积分10
23秒前
求知小生完成签到 ,获得积分10
24秒前
Akim应助dcx采纳,获得10
25秒前
xixixi发布了新的文献求助10
25秒前
不着四六的岁月完成签到,获得积分10
25秒前
饱满的棒棒糖完成签到 ,获得积分10
27秒前
28秒前
12wsesd完成签到 ,获得积分10
28秒前
小科完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946218
求助须知:如何正确求助?哪些是违规求助? 3491139
关于积分的说明 11059274
捐赠科研通 3222093
什么是DOI,文献DOI怎么找? 1780863
邀请新用户注册赠送积分活动 865877
科研通“疑难数据库(出版商)”最低求助积分说明 800083