Feature selection based on fuzzy combination entropy considering global and local feature correlation

特征选择 熵(时间箭头) 人工智能 模式识别(心理学) 特征(语言学) 模糊逻辑 相关性 数据挖掘 计算机科学 数学 联合熵 机器学习 最大熵原理 量子力学 语言学 物理 哲学 几何学
作者
Jianhua Dai,Qi Liu,Xiongtao Zou,Chucai Zhang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:652: 119753-119753 被引量:14
标识
DOI:10.1016/j.ins.2023.119753
摘要

Feature selection is a commonly employed method to decrease data processing complexity by discarding unnecessary and repetitive features. An effective feature selection method can mitigate the challenges posed by high-dimensional data, save computing resources and improve learning performance. Combination entropy is a useful tool for assessing feature uncertainty, which provides an intuitive representation of the amount of information. However, classical combination entropy is difficult to be directly used for continuous features. Therefore, we propose the concept of fuzzy combination entropy. Moreover, we put forward an importance metric that comprehensively considers global feature correlation and local feature correlation. Firstly, the fuzzy combination entropy (FCE) is presented based on the fuzzy λ-similarity relation. Secondly, by combining the benefits of fuzzy rough sets and combination entropy, fuzzy combination entropy and its variants are constructed, and their related properties are also discussed. Thirdly, the concepts of global feature correlation and local feature correlation are defined and an importance metric is proposed. Finally, a feature selection method according to fuzzy combination entropy considering global feature correlation and local feature correlation (FSmFCE) is designed. According to the findings from our experiments, it is evident that our algorithm demonstrates a preference for selecting a smaller feature set, yet still achieves commendable classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助yu采纳,获得10
刚刚
yi发布了新的文献求助30
刚刚
调皮的鬼神完成签到,获得积分10
刚刚
1秒前
湘北完成签到,获得积分20
2秒前
所所应助轻松乾采纳,获得10
2秒前
4秒前
宋十一发布了新的文献求助10
5秒前
李春霞发布了新的文献求助10
5秒前
storm完成签到 ,获得积分10
7秒前
9秒前
小巧亦竹发布了新的文献求助10
9秒前
消烦员完成签到 ,获得积分10
9秒前
10秒前
于雷是我完成签到,获得积分10
10秒前
左手骑车发布了新的文献求助30
11秒前
善学以致用应助快乐滑板采纳,获得20
11秒前
面包发布了新的文献求助10
12秒前
13秒前
13秒前
无奈书包发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
李淼旭发布了新的文献求助30
16秒前
HonamC完成签到,获得积分10
17秒前
腼腆的梦蕊完成签到 ,获得积分10
17秒前
传奇3应助冷静的帽子采纳,获得10
17秒前
杜卓翰发布了新的文献求助10
18秒前
轻松乾发布了新的文献求助10
19秒前
徐春悦完成签到,获得积分10
21秒前
21秒前
yu发布了新的文献求助10
23秒前
23秒前
FashionBoy应助快乐滑板采纳,获得10
24秒前
27秒前
颜凡桃发布了新的文献求助10
27秒前
大方念云完成签到,获得积分10
27秒前
Tao2023发布了新的文献求助10
28秒前
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846158
求助须知:如何正确求助?哪些是违规求助? 3388556
关于积分的说明 10553391
捐赠科研通 3109110
什么是DOI,文献DOI怎么找? 1713334
邀请新用户注册赠送积分活动 824732
科研通“疑难数据库(出版商)”最低求助积分说明 774982