Iterative Reconstruction Algorithms in Magneto-Acousto-Electrical Computed Tomography (MAE-CT) for Image Quality Improvement

迭代重建 成像体模 噪音(视频) 算法 重建算法 断层摄影术 图像质量 氡变换 图像噪声 人工智能 计算机断层摄影术 计算机科学 图像分辨率 计算机视觉 物理 图像(数学) 医学 光学 放射科
作者
T. Sun,Mengmeng Yu,Linguo Yu,Dingqian Deng,Mian Chen,Haoming Lin,Siping Chen,Chunqi Chang,Xin Chen
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (2): 669-678
标识
DOI:10.1109/tbme.2023.3314617
摘要

Magneto-acousto-electrical computed tomography (MAE-CT) is a recently developed rotational magneto-acousto-electrical tomography (MAET) method, which can map the conductivity parameter of tissues with high spatial resolution. Since the imaging mode of MAE-CT is similar to that of CT, the reconstruction algorithms for CT are possible to be adopted for MAE-CT. Previous studies have demonstrated that the filtered back-projection (FBP) algorithm, which is one of the most common CT reconstruction algorithms, can be used for MAE-CT reconstruction. However, FBP has some inherent shortcomings of being sensitive to noise and non-uniform distribution of views. In this study, we introduced iterative reconstruction (IR) method in MAE-CT reconstruction and compared its performance with that of the FBP. The numerical simulation, the phantom, and in vitro experiments were performed, and several IR algorithms (ART, SART, SIRT) were used for reconstruction. The results show that the images reconstructed by the FBP and IR are similar when the data is noise-free in the simulation. As the noise level increases, the images reconstructed by SART and SIRT are more robust to the noise than FBP. In the phantom experiment, noise and some stripe artifacts caused by the FBP are removed by SART and SIRT algorithms. In conclusion, the IR method used in CT is applicable in MAE-CT, and it performs better than FBP, which indicates that the state-of-the-art achievements in the CT algorithm can also be adopted for the MAE-CT reconstruction in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiehahah发布了新的文献求助10
3秒前
田田完成签到,获得积分10
3秒前
4秒前
踏实的硬币完成签到,获得积分10
5秒前
夏时安发布了新的文献求助20
6秒前
冰魂应助肖舒震采纳,获得10
7秒前
11秒前
烟花应助Felly采纳,获得10
12秒前
Mya发布了新的文献求助10
14秒前
科研通AI5应助cjxxjc729采纳,获得10
15秒前
充电宝应助笑点低的映安采纳,获得10
17秒前
木染发布了新的文献求助10
20秒前
zmnzmnzmn应助Mya采纳,获得10
22秒前
畅快的刚完成签到 ,获得积分10
22秒前
谦让忆文完成签到,获得积分10
26秒前
33秒前
善学以致用应助青炀采纳,获得10
33秒前
Lysong发布了新的文献求助20
34秒前
檀江完成签到 ,获得积分10
35秒前
村长夫人发布了新的文献求助10
36秒前
嘉星糖完成签到,获得积分10
39秒前
39秒前
上官若男应助木染采纳,获得10
41秒前
爆米花应助qiehahah采纳,获得10
41秒前
深情安青应助qiehahah采纳,获得10
42秒前
LiuX发布了新的文献求助10
43秒前
永无止境完成签到 ,获得积分10
44秒前
pluto应助Lysong采纳,获得20
44秒前
寒冷寻桃完成签到 ,获得积分10
46秒前
46秒前
科研通AI5应助LiuX采纳,获得10
51秒前
科研通AI5应助谦让忆文采纳,获得10
51秒前
lucy完成签到,获得积分20
55秒前
56秒前
57秒前
59秒前
Lysong完成签到,获得积分10
1分钟前
封腾关注了科研通微信公众号
1分钟前
李铛铛发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776959
求助须知:如何正确求助?哪些是违规求助? 3322349
关于积分的说明 10209964
捐赠科研通 3037710
什么是DOI,文献DOI怎么找? 1666837
邀请新用户注册赠送积分活动 797676
科研通“疑难数据库(出版商)”最低求助积分说明 758003