GeoEvoBuilder: A deep learning framework for efficient functional and thermostable protein design

蛋白质设计 计算机科学 计算生物学 人工智能 化学 生物 蛋白质结构 生物化学
作者
Jiale Liu,Hantian You,Zheng Guo,Qin Xu,Changsheng Zhang,Luhua Lai
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (41)
标识
DOI:10.1073/pnas.2504117122
摘要

While deep learning has advanced protein sequence and function design, engineering highly active and stable proteins still requires labor-intensive iterative computational design and experimentation. There is a critical need for methods capable of directly generating protein sequences with the required properties. Here, we present GeoEvoBuilder, an advanced deep learning framework that adaptively integrates structural and evolutionary constraints for protein sequence design. GeoEvoBuilder accurately recapitulates functional sites and generates sequences that fold correctly with enhanced activity and thermal stability. GeoEvoBuilder has been applied to redesign green fluorescent protein, glutathione peroxidase 4 (GPX4), and dihydrofolate reductase (DHFR), yielding variants with significantly improved thermal stability and activity. Notably, the top DHFR design demonstrated a 20-fold increase in catalytic efficiency and a 10 °C gain in thermal stability. Crystal structure determination confirmed that the designed proteins form correct structures. Further analysis of residue dynamic correlations in GPX4 variants provides insights into how remote sites regulate enzymatic activity. Unlike conventional methods that focus on single mutation and their combinations with iterative design and experiment cycles, GeoEvoBuilder explores a large sequence space that enables successful designs with over 30% residue changes in one run. GeoEvoBuilder not only provides a transformative tool for protein engineering but also can be applied to uncover the intricate relationships between protein sequence, structure, function, and evolution. GeoEvoBuilder is publicly available at https://github.com/PKUliujl/GeoEvoBuilder .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大芳儿发布了新的文献求助10
刚刚
范先生完成签到,获得积分10
刚刚
c182484455完成签到,获得积分10
1秒前
2秒前
Alone离殇完成签到 ,获得积分10
2秒前
汉堡包应助合适不悔采纳,获得10
2秒前
2秒前
JamesPei应助帅气冰蝶采纳,获得10
2秒前
无畏完成签到 ,获得积分10
3秒前
妖哥完成签到,获得积分10
4秒前
第三方斯蒂芬完成签到,获得积分10
4秒前
4秒前
旭东静静完成签到,获得积分10
5秒前
ZPQ发布了新的文献求助10
6秒前
6秒前
6秒前
满意芾发布了新的文献求助10
6秒前
6秒前
7秒前
weatsun完成签到,获得积分10
7秒前
李健应助一人一般采纳,获得10
7秒前
星辰大海应助pp.gsyx采纳,获得30
7秒前
7秒前
量子星尘发布了新的文献求助100
7秒前
7秒前
8秒前
MASAMI完成签到,获得积分10
8秒前
小软完成签到,获得积分10
8秒前
煌大河完成签到 ,获得积分10
9秒前
浮游应助行毅文采纳,获得10
9秒前
zz13670585632发布了新的文献求助10
9秒前
10秒前
777发布了新的文献求助10
10秒前
科研通AI5应助zsh采纳,获得10
11秒前
归尘发布了新的文献求助10
11秒前
鹤轩发布了新的文献求助10
11秒前
可爱向卉发布了新的文献求助10
11秒前
12秒前
Ava应助Ado采纳,获得10
12秒前
qsbss发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4903085
求助须知:如何正确求助?哪些是违规求助? 4181879
关于积分的说明 12983724
捐赠科研通 3947286
什么是DOI,文献DOI怎么找? 2165076
邀请新用户注册赠送积分活动 1183394
关于科研通互助平台的介绍 1089787